
High Performance Computing
Lecture 24

Matthew Jacob

Indian Institute of Science

2

Solving Data Hazards
1. Interlocks & stalling dependent instructions
2. Forwarding or Bypassing
3. Load delay slot
4. Instruction Scheduling
 Reorder the instructions of the program so that

dependent instructions are far enough apart
 This could be done either
 by the compiler, before the program runs: Static

Instruction Scheduling
 by the hardware, when the program is running:

Dynamic Instruction Scheduling

3

Static Instruction Scheduling
 Reorder the instructions of the program to

eliminate data hazards …
 or in general to reduce the execution time of the

program
 Reordering must be safe

ADD R1, R2, R3 /* R1 = R2 + R3 */
SUB R2, R4, R5 /* R2 = R4 – R5 */

4

Static Instruction Scheduling
 Reorder the instructions of the program to

eliminate data hazards …
 or in general to reduce the execution time of the

program
 Reordering must be safe
 should not change the meaning of the program

 Two instructions can be exchanged if they
are independent of each other

5

Example: Static Instruction Scheduling
Program fragment:

LW R3, 0(R1)
ADDI R5, R3, 1
ADD R2, R2, R3
LW R13, 0(R11)
ADD R12, R13, R3

Scheduling:

1 stall

1 stall

2 stalls 0 stalls

LW R3, 0(R1)

ADDI R5, R3, 1

ADD R2, R2, R3

LW R13, 0(R11)

ADD R12, R13, R3

6

Solving Data Hazards
1. Interlocks & stalling dependent instructions
2. Forwarding or Bypassing
3. Load delay slot
4. Instruction Scheduling
 Reorder the instructions of the program so that

dependent instructions are far enough apart
 This could be done either
 by the compiler, before the program runs: Static

Instruction Scheduling
 by the hardware, when the program is running:

Dynamic Instruction Scheduling

7

Kinds of Data Dependence
 True dependence

ADD R1, R2, R3
SUB R4, R1, R5

 Anti-dependence
ADD R1, R2, R3
SUB R2, R4, R5

 Output dependence
ADD R1, R2, R3
SUB R1, R4, R5

8

Dynamic Instruction Scheduling
IF ID EX MEM WB

EXIF WBID

Instruction Window
Instruction Queue

Functional Units
Floating point Adder

Floating point Multiplier

Integer ALU

Integer Multiplier

Memory Unit

With dynamic instruction scheduling …

9

 The hardware dynamically schedules
instructions from the Instruction Window for
execution on the functional units

 The instructions could execute in an order
that is different from that specified by the
program
 with the same result

 Such processors are called “out of order”
processors
 as opposed to “in order” processors

Dynamic Instruction Scheduling

10

Problem: Pipeline Hazards
A situation where an instruction cannot
proceed through the pipeline as it should

1. Structural hazard: When 2 or more
instructions in the pipeline need to use the
same resource at the same time

2. Data hazard: When an instruction depends
on the data result of a prior instruction that
is still in the pipeline

3. Control hazard: A hazard that arises due to
control transfer instructions

11

Recall: Execution of Branch Instruction

Mem

+

PC Reg
File

Sign
extend

IF ID

4

ALU

Zero?

Mem

EX MEM WB

12

Control Hazards
BEQZ R3, out

Fetch inst (i +1) or
from target?

IF ID

Fetch inst (i +1) or
from target?

Branch resolved; Fetch
appropriate instruction

IF WBMEMEXID

Condition and target
are resolved by now

MEMEXIDIFB B B BB

IF EXIDB B BB

13

Control Hazards
 Observation: Since the branch is resolved

only in the EX stage, there must be 2 stall
cycles after every conditional branch
instruction

14

Reducing Impact of Branch Stall
 The execution of a conditional branch

instruction involves 2 activities
1. evaluating the branch condition (determine

whether it is to be taken or not-taken)
2. computing the branch target address

 To reduce branch stall effect we could
 evaluate the condition earlier (in ID stage)
 compute the target address earlier (in ID stage)

 The number of stall cycles would then be
reduced to 1 cycle

15

Control Hazard Solutions
1. Static Branch Prediction

Prediction?
reasoning about the future
guessing what is going to happen

Static
The behaviour of a branch instruction is predicted
once before the program starts executing

16

Prediction and Correctness
 Prediction: guessing what is going to happen
 What if the guess is incorrect?
 The pipelined processor hardware must be built to

detect the misprediction and take appropriate
corrective action

17

Control Hazard Solutions
1. Static Branch Prediction

Example: Static Not-Taken policy
 The hardware is built to fetch next from PC + 4
 After ID stage, if it is found that the branch

condition is false (i.e., not taken), continue with
the fetched instruction (from PC + 4)
 Else, squash the fetched instruction and re-fetch

from the branch target address
 squash: cancel, annul the processing of that instruction

18

IF

Static Not-Taken Branch Prediction

BEQZ R3, out

Fetch inst i +1

IF ID

IF WBMEMEXID

Suppose that the
condition evaluates
to FALSE

MEMEXID

IF EXIDFetch inst i +2

etc

1 2 3 4 5

i.e., NO BRANCH STALL CYCLES

19

IF

Static Not-Taken Branch Prediction

BEQZ R3, out

Fetch inst i +1

IF ID

IF WBMEMEXID

Suppose that the
condition evaluates
to TRUE

MEMEXID

IF EXID
Fetch inst from
branch target address

etc

1 2 3 4 5

SQUASH inst i+1

i.e., ONE BRANCH STALL CYCLE

20

Control Hazard Solutions
1. Static Branch Prediction

Example: Static Not-Taken policy
 The hardware is built to fetch next from PC + 4
 After ID stage, if it is found that the branch

condition is false (i.e., not taken), continue with
the fetched instruction (from PC + 4)
 Else, squash the fetched instruction and re-fetch

from the branch target address

 Thus, average branch penalty < 1 cycle

0 stall cycles

1 stall cycle

21

Control Hazard Solutions
1. Static Branch Prediction
2. Delayed Branching
 Design hardware so that control transfer

takes place after a few of the following
instructions

BEQ R1, R2, target
ADD R3, R2, R3

22

Recall: Interesting ISA Notes
 For load instructions: the loaded value might

not be available in the destination register for
use by the instruction immediately following
the load
 LOAD DELAY SLOT

 For control transfer instructions: the transfer
of control takes place only following the
instruction immediately after the control
transfer instruction
 BRANCH DELAY SLOT

23

Control Hazard Solutions
1. Static Branch Prediction
2. Delayed Branching
 Design hardware so that control transfer

takes place after a few of the following
instructions

BEQ R1, R2, target
ADD R3, R2, R3

 Delay slots: following instructions that are
executed whether or not the branch is taken

 Stall cycles are avoided if the delay slots
are filled with useful instructions

