
Module 5 (Lectures 21-24) Pipelined processors

1. Consider the 5 stage processor pipeline that we discussed. As we observed, this
pipeline can potentially speed-up program execution by a factor of 5, when
compared to an equivalent non-pipelined processor. What would the speed-up be
considering a program for which every 5th instruction suffers a 1 cycle `bubble’
due to a hazard?

2. Consider the MIPS 1 code fragment on the 5 stage processor pipeline that we
discussed. Many of the instructions in this fragment are dependent on each other.
Mark the data dependencies, labeling each by its type (RAW, WAR, etc) and
identifying those that would NOT be handled by the pipeline implementation
techniques (e.g., result forwarding) that we discussed.

LW R7, -8(R7)
ADD R3, R5, R7
SUB R5, R3, R7
OR R7, R3, R7

3. The manual of a particular computer provides the following warnings for
programmers regarding the processor pipeline: There are two load delay slots.
There is one branch delay slot. There must be at least 2 instructions between a
floating point computation instruction and a floating point store instruction that
uses the value computed by the computation operation for correct operation to
occur. You are given the inner loop of a program below. The instructions whose
mnemonics start with the letter `F’ are floating point instructions that use floating
point registers F0..F31.
Loop: FLOAD F0, 0(R1)

FLOAD F2, 0(R2)
FADD F4, F0, F2
FSTORE 0(R1), F4
ADDI R1, R1, 8
ADDI R2, R2, 8
BLE R1, R3, Loop

How many cycles does one iteration of the loop take in its present form, once it
has been corrected with insertion of NOPs (no-operation instructions) to take into
account the warnings mentioned above? Do static instruction scheduling to
improve the loop as much as you can. How many cycles does each iteration now
take?

4. The manual of a particular computer provides the following warnings for
programmers regarding the processor pipeline: There is one load delay slot. There
are two branch delay slots. There must be at least 2 instructions between a
floating point computation instruction and a floating point store instruction that
uses the value computed by the computation operation for correct operation to
occur. You are given the inner loop of a program below. The instructions whose
mnemonics start with the letter `F’ are floating point instructions that use floating
point registers F0..F31.
saxpy: ADD R5, R1, R3

FLOAD F2, 0(R5)

FMULT F2, F0, F2
ADD R6, R1, R4
FLOAD F4, 0(R6)
FADD F2, F2, F4
FSTORE 0(R5), F2
ADDI R1, R1, 4
BLT R1, R2, saxpy

How many cycles does one iteration of the loop take in its present form once it
has been corrected (by insertion of NOPs) to take into account the warnings
mentioned above? Do static instruction scheduling to improve the loop as much as
you can. How many cycles does each iteration now take?

5. Some pipelined processors handle control hazards using dynamic branch
prediction; they incorporate hardware that predicts whether a given branch will be
taken or not, based on the recent behaviour of branches in the program. Dynamic
branch predictors with very high prediction accuracy (prediction accuracy: the
percentage of branch executions that it predicted correctly). A simple example of
this idea is the One Bit Branch Predictor. In this dynamic branch prediction
scheme, the hardware maintains a Branch Prediction Table (BPT), which contains
a 1 bit entry for each branch in the program. Initialized to 0, the entry is set to 1 if
the branch is executed and taken, or reset to 0 if the branch is executed and not
taken. In order to predict the next behaviour of the given branch, the hardware
looks up the BPT entry for that branch. If the table entry is 0, it predicts that the
branch will not be taken; if the table entry is 1, it predicts that the branch will be
taken. What would be the prediction accuracy of a One Bit Branch Predictor for
the following C program fragment?

int i, j=0;
for (i=0; i<100; i++)
 if (i % 2) j++;
 else j+=2;

You should assume that the compiled version of this program contains 2 branch
instructions, one to implement the for loop (i.e., transfer of control from the end
of the loop body to the loop header) and the other to implement the if-then-else
(i.e., transfer of control to the else part after checking the condition).

