
High Performance Computing
Lecture 25

Matthew Jacob

Indian Institute of Science

2

Control Hazard Solutions
1. Static Branch Prediction
2. Delayed Branching
 Design hardware so that control transfer

takes place after a few of the following
instructions

BEQ R1, R2, target
ADD R3, R2, R3

 Delay slots: following instructions that are
executed whether or not the branch is taken

 Stall cycles are avoided if the delay slots
are filled with useful instructions

3

Delayed Branching: Filling Delay Slots
 Instructions that do not affect the branching

condition can be put in the delay slot
 by the compiler

 Where to get instructions to fill delay slots?
 From the branch target address
 only valuable when branch is taken

 From the fall through (branch not taken path)
 only valuable when branch is not taken

 From before the branch
 useful whether branch is taken or not

4

Delayed Branching…Compiler’s Role
 When filled from branch target or fall-through,

patch-up code may be needed
BEQZ R1, target

target: ADDI R7, R7, 1

/ Branch delay slot

LW R8, -8(R29)

…
…

fall through:

5

Delayed Branching…Compiler’s Role
 When filled from branch target or fall-through,

patch-up code may be needed
BEQZ R1, target
ADDI R7, R7, 1 / Branch delay slot

LW R8, -8(R29)target:

SUBI R7, R7, 1…
…

fall through:

6

Delayed Branching…Compiler’s Role
 When filled from branch target or fall-through,

patch-up code may be needed
 It may still be beneficial, depending on branching

frequency
 The more the number of delay slots, the harder it

is to fill them usefully

7

If no instruction can be found…
 The compiler must insert an instruction that

does nothing
 other than occupying the delay slot, being fetched

and decoded
 Example: ADD R0, R0, R0
 If an instruction that does nothing was included in

the instruction set, it would be called a No-
Operation instruction, or NOP for short

 NOP might be included in the assembly language
 It has practically the same effect as a STALL

cycle

8

Pipeline and Programming
 Consider a simple pipeline with the following

warnings in the ISA manual
1. One load delay slot
2. One branch delay slot
3. 2 instructions after FP arithmetic operation can’t

use the value computed by that instruction
 We will think about a specific program, say

vector addition
double A[1024], B[1024];
for (i=0; i<1024; i++) A[i] = A[i] + B[i];

9

Vector Addition Loop

Loop: FLOAD F0, 0(R1)
FLOAD F2, 0(R2)

FADD F4, F0, F2

FSTORE 0(R1), F4

ADDI R1, R1, 8

ADDI R2, R2, 8
BLE R1, R3, Loop

11 cycles per iteration

/ F0 = A[i]
/ F2 = B[i]
/ F4 = F0 + F2

/ A[i] = F4

/ R1: addr(A[0]), R2: addr(B[0])

/ R1 increment

/ R2 increment

/ R3: address(A[1023])

10

Vector Addition Loop

Loop: FLOAD F0, 0(R1)
FLOAD F2, 0(R2)

FADD F4, F0, F2

FSTORE 0(R1), F4

ADDI R1, R1, 8

ADDI R2, R2, 8
BLE R1, R3, Loop

Loop: FLOAD F0, 0(R1)
FLOAD F2, 0(R2)

ADDI R1, R1, 8
FADD F4, F0, F2

ADDI R2, R2, 8

BLE R1, R3, Loop
FSTORE -8(R1), F4

11 cycles per iteration 7 cycles per iteration

11

An even faster loop? Loop Unrolling
 Idea: Each time through the loop, do the work

of more than one iteration
 More instructions to use in reordering
 Less instructions executed for loop control
 … but program increases in size

12

Loop Unrolling
Loop: FLOAD F0, 0(R1)

FLOAD F2, 0(R2)
FADD F4, F0, F2
FSTORE 0(R1), F4
ADDI R1, R1, 8
ADDI R2, R2, 8
BLE R1, R3, Loop

Loop: FLOAD F0, 0(R1)
FLOAD F2, 0(R2)
FADD F4, F0, F2
FSTORE 0(R1), F4
FLOAD F0, 8(R1)
FLOAD F2, 8(R2)
FADD F4, F0, F2
FSTORE 8(R1), F4
ADDI R1, R1, 16
ADDI R2, R2, 16
BLE R1, R3, Loop

18 cycles for 2 iterations (9 cycles/iteration)
Reorder to reduce to 5.5 cycles per iteration

13

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

14

Cache Memory; Memory Hierarchy
 Recall: In discussing pipeline, we assumed

that memory latency will be hidden so that it
appears to operate at processor speed

 Cache Memory: HW that makes this happen
 Design principle: Locality of Reference
 Temporal locality: least recently used objects are

least likely to be referenced in the near future
 Spatial locality: neighbours of recently referenced

locations are likely to be referenced in the near
future

15

Cache Memory Exploits This
Cache: Hardware structure that provides

memory objects that the processor references
 directly (most of the time)
 fast

CPU Cache
Main Memoryaddress

data

16

Cache Design
Cache

address A
Fast
Memory

`Do I Have It’? Logic
Lookup Logic

Table of
`Addresses I Have’

Cache Directory

Cache
RAM

Typical size: 32KB
i.e., 1000s of
instructions/data
items can be stored

