
High Performance Computing
Lecture 26

Matthew Jacob

Indian Institute of Science

2

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

3

Cache Memory; Memory Hierarchy
 Recall: In discussing pipeline, we assumed

that memory latency will be hidden so that it
appears to operate at processor speed

 Cache Memory: HW that makes this happen
 Design principle: Locality of Reference
 Temporal locality: least recently used objects are

least likely to be referenced in the near future
 Spatial locality: neighbours of recently referenced

locations are likely to be referenced in the near
future

4

Cache Memory Exploits This
Cache: Hardware structure that provides

memory objects that the processor references
 directly (most of the time)
 fast

CPU Cache
Main Memoryaddress

data

5

Cache Design
Cache

address A
Fast
Memory

`Do I Have It’? Logic
Lookup Logic

Table of `Addresses
I Have’

Cache Directory

Cache
RAM

Typical size: 32KB
i.e., 1000s of
instructions/data
items can be stored

6

How to do fast Cache Lookup?
• Searching

• Techniques to search for a specific value from a
large collection of data
• Searching for the word “phase” in a large text file
• Searching for the number 10 in a large integer array

• Our specific search problem: looking for the
address A among the 1000s of addresses in
the cache directory
• Requirement: The search must be FAST

7

Search Algorithms
1. Linear Search

• Compare A with the first address in the cache
directory

• If they match, the search is successful
• Else compare A with the second address in the

directory
• If you reach the last address in the directory

without finding a match, the search was
unsuccessful

• Problem: Could take 1000s of comparisons

…0 1 2 3 n-1

8

Search Algorithms
1. Linear Search
2. Binary Search
 Sort the array of data items, say in increasing

order
 Compare A with the middle value
 If they match, the search is successful
 Else repeat for the appropriate half of the data

 Much faster than linear search
 Problem: Could take 10s of comparisons

0 n-1n/2… …

9

Search Algorithms
1. Linear Search
2. Binary Search
3. Hash Search
 May typically take just 1 comparison
 The number of comparisons required doesn’t

depend on the number of data values that we are
searching among

10

Hash Search
Hashing: A search technique that uses a hash

table indexed into using a hash function
• Hash function

• A function computed on the search string

11

Hash Table Example
 Example: Searching for the word “phase”
 Searching for a string of characters, s0s1s2…slen-1

 Hash function: lens
len

i
i div

1

0





0

1

255

“phase”

 But, “phase” and “shape” will
hash to the same index value

 This is called a hash collision

12

Hash Table Example
 Example: Searching for the word “phase”
 Searching for a string of characters, s0s1s2…slen-1

 Hash function: lens
len

i
i div

1

0





0

1

255

“phase”

 But, “phase” and “shape” will
hash to the same index value

 This is called a hash collision

13

How to do fast Cache Lookup?
• In the cache situation: cache lookup hardware

is doing a search for an address A
• Simple hash function: select some of the bits

of the address A
• Which bits of address A?

14

How to do fast Cache Lookup?

address A

msbs lsbs

15

Most Significant Bits
Main memory addresses

text

All the instructions
may have the same
most significant bits

16

How to do fast Cache Lookup?

address A

msbs

For a small program, everything would index into the
same place in the hash table (collisions)

Using the Most Significant address bits for hashing
is not a good idea

17

Least Significant Bits
Main memory addresses

A0101110000101010
0101110000101001

0101110000101011
0101110000101100

0101110000101000

A and its neighbours
typically differ only in their
least significant bits

18

How to do fast Cache Lookup?

address A

lsbs

A and its neighbours possibly differ only in these bits; but
they should be treated as one unit, not hashing into
different hash table entries

Using the Least Significant address bits for hashing is
not a good idea

19

Memory address
Block

offsetaddress A
lsbmsb

Index

into
directory

Block: Serves the same purposes in cache
memory as the Page does in virtual memory

The Cache Directory contains one entry for
each cache block, just like the Page Table
contains one entry for each virtual page

1. Reduce translation table size

2. Exploit spatial locality of reference

20

Summing up
 A cache is organized in terms of blocks,

memory locations that share the same
address bits other than lsbs

 Main memory is also organized in terms of
blocks

 The cache hardware views an address as
block

offsetIndex

into
directory

tag

21

Main
Memory

I/O

Bus

I/OI/O

ALU Registers

Processor or CPU

Control

Recall: Kinds of Memory

CacheMMU
Secondary

Storage
e.g., HDD

(Disk)

22

Registers, Cache, Main Memory
 Circuits that can remember things
 Either by the state that a flip-flop is in or by the

amount of charge stored
 In both cases, the information is lost when the power

source is turned off

 Uses a basic circuit for one bit of information
 This is replicated to remember a number of

pieces of information that is each more than
one bit in size

23

Main Memory
 In advertisements, you read of a computer

with “2GB RAM”
 RAM: Random Access Memory
 Able to handle arbitrarily ordered requests without

favouring any particular request

24

Memory Hierarchy
 CPU registers
 few in number (typically 16/32/128)
 subcycle access time (nsec)

 Cache memory
 on-chip memory
 10’s of KBytes (to a few MBytes)
 access time of a few cycles

 Main memory
 100’s of MBytes storage (to a few GBytes)
 access time several 10’s of cycles

 Secondary storage (like disk)
 100’s of GBytes storage (to a few TBytes)
 access time of msecs

25

Memory Hierarchy

Main (Primary) Memory

Secondary Memory

Cache memory
Registers

