
High Performance Computing
Lecture 29

Matthew Jacob

Indian Institute of Science

2

Memory Hierarchy Progression

Cache

Main (Primary) Memory

Secondary
Memory

Level 2 Cache

Level 1 Cache

L3, L4… Cache

3

Cache and Programming
 Objective: Learn how to assess cache related

performance issues for important parts of our
programs

 Will look at several examples of programs
 Will consider only data cache, assuming

separate instruction and data caches
 Data cache configuration:
 Direct mapped 16 KB write back cache with 32B

block size

Offset: 5bIndex: 9bTag : 18b

4

Example 1: Vector Sum Reduction
double A[2048], sum=0.0;
for (i=0; i<2048, i++) sum = sum +A[i];

• To do analysis, must view program close to
machine code form (to see loads/stores)
• Recall from static instruction scheduling examples

how loop index i was implemented in a register
and not load/stored inside loop

• Will assume that both loop index i and variable
sum are implemented in registers

• Will consider only accesses to array elements

5

Example 1: Reference Sequence
 load A[0] load A[1] load A[2] … load A[2047]
 Assume base address of A (i.e., address of

A[0]) is 0xA000, 1010 0000 0000 0000
 Cache index bits: 100000000 (value = 256)

 Size of an array element (double) = 8B
 So, 4 consecutive array elements fit into each

cache block (block size is 32B)
 A[0] – A[3] have index of 256

 A[4] – A[7] have index of 257 and so on

100000000 00000
100000000 01000
100000000 10000
100000000 11000

100000001 00000
100000001 01000
100000001 10000
100000001 11000

6

Example 1: Cache Misses and Hits

2550xDFF8A[2047]
2550xDFF0A[2046]
2550xDFE8A[2045]
2550xDFE0A[2044]
......
......

2570xA038A[7]
2570xA030A[6]
2570xA028A[5]
2570xA020A[4]
2560xA018A[3]
2560xA010A[2]
2560xA008A[1]
2560xA000A[0]

7

Example 1: Cache Misses and Hits

Hit2550xDFF8A[2047]
Hit2550xDFF0A[2046]
Hit2550xDFE8A[2045]

Cold startMiss2550xDFE0A[2044]
........
..

Hit2570xA038A[7]
Hit2570xA030A[6]
Hit2570xA028A[5]

Cold startMiss2570xA020A[4]
Hit2560xA018A[3]
Hit2560xA010A[2]

Hit2560xA008A[1]
Cold startMiss2560xA000A[0]

Cold start miss: we
assume that the cache is
initially empty. Also called
a Compulsory Miss

Hit ratio of our loop is
75% -- there are 1536
hits out of 2048 memory
accesses

This is entirely due to
spatial locality of
reference.

If the loop was preceded
by a loop that accessed
all array elements, the hit
ratio of our loop would be
100%, 25% due to
temporal locality and 75%
due to spatial locality

Cold start miss: we
assume that the cache is
initially empty. Also called
a Compulsory Miss

Cold start miss: we
assume that the cache is
initially empty. Also called
a Compulsory Miss

8

Example 1 with double A[4096]
Why should it make a difference?
 Consider the case where the loop is preceded by

another loop that accesses all array elements in
order

 The entire array no longer fits into the cache –
cache size: 16KB, array size: 32KB

 After execution of the previous loop, the second half
of the array will be in cache

 Analysis: our loop sees misses as we just saw
 Called Capacity Misses as they would not be misses

if the cache had been big enough

9

Example 2: Vector Dot Product
double A[2048], B[2048], sum=0.0;
for (i=0; i<2048, i++) sum = sum +A[i] * B[i];

• Reference sequence:
• load A[0] load B[0] load A[1] load B[1] …

• Assume base addresses of A and B are
0xA000 and 0xE000

• Again, size of array elements is 8B so that 4
consecutive array elements fit into each
cache block

Offset: 5bIndex: 9bTag : 18b

10

Example 2: Vector Dot Product

ConflictMiss511....
........
..

ConflictMiss2560xE018B[3]
ConflictMiss2560xA018A[3]
ConflictMiss2560xE010B[2]
ConflictMiss2560xA010A[2]
ConflictMiss2560xE008B[1]
ConflictMiss2560xA008A[1]

Cold startMiss2560xE000B[0]
Cold startMiss2560xA000A[0]

Offset: 5bIndex: 9bTag : 18b

000000000000000010 100000000 00000
000000000000000011 100000000 00000
000000000000000010 100000000 01000
000000000000000011 100000000 01000
000000000000000010 100000000 10000
000000000000000011 100000000 10000
000000000000000010 100000000 11000
000000000000000011 100000000 11000

11

Example 2: Cache Hits and Misses

ConflictMiss5110xFFF8B[1023]
........
..

ConflictMiss2560xE018B[3]
ConflictMiss2560xA018A[3]
ConflictMiss2560xE010B[2]
ConflictMiss2560xA010A[2]
ConflictMiss2560xE008B[1]
ConflictMiss2560xA008A[1]

Cold startMiss2560xE000B[0]
Cold startMiss2560xA000A[0]

Conflict miss: a miss due to
conflicts in cache block
requirements from memory
accesses of the same
program

Hit ratio for our program:
0%

Source of the problem: the
elements of arrays A and B
accessed in order have the
same cache index

Hit ratio would be better if
the base address of B is
such that these cache
indices differ

12

Example 2 with Packing
• Assume that compiler assigns addresses as

variables are encountered in declarations
• To shift base address of B enough to make

cache index of B[0] different from that of A[0]
double A[2052], B[2048];

• Base address of B is now 0xE020
• 0xE020 is 1110 0000 0010 0000
 Cache index of B[0] is 257; B[0] and A[0] do not

conflict for the same cache block
 Hit ratio of our loop would then be 75%

double A[2048], d1, d2, d3, d4, B[2048];

