
High Performance Computing
Lecture 29

Matthew Jacob

Indian Institute of Science

2

Memory Hierarchy Progression

Cache

Main (Primary) Memory

Secondary
Memory

Level 2 Cache

Level 1 Cache

L3, L4… Cache

3

Cache and Programming
 Objective: Learn how to assess cache related

performance issues for important parts of our
programs

 Will look at several examples of programs
 Will consider only data cache, assuming

separate instruction and data caches
 Data cache configuration:
 Direct mapped 16 KB write back cache with 32B

block size

Offset: 5bIndex: 9bTag : 18b

4

Example 1: Vector Sum Reduction
double A[2048], sum=0.0;
for (i=0; i<2048, i++) sum = sum +A[i];

• To do analysis, must view program close to
machine code form (to see loads/stores)
• Recall from static instruction scheduling examples

how loop index i was implemented in a register
and not load/stored inside loop

• Will assume that both loop index i and variable
sum are implemented in registers

• Will consider only accesses to array elements

5

Example 1: Reference Sequence
 load A[0] load A[1] load A[2] … load A[2047]
 Assume base address of A (i.e., address of

A[0]) is 0xA000, 1010 0000 0000 0000
 Cache index bits: 100000000 (value = 256)

 Size of an array element (double) = 8B
 So, 4 consecutive array elements fit into each

cache block (block size is 32B)
 A[0] – A[3] have index of 256

 A[4] – A[7] have index of 257 and so on

100000000 00000
100000000 01000
100000000 10000
100000000 11000

100000001 00000
100000001 01000
100000001 10000
100000001 11000

6

Example 1: Cache Misses and Hits

2550xDFF8A[2047]
2550xDFF0A[2046]
2550xDFE8A[2045]
2550xDFE0A[2044]
......
......

2570xA038A[7]
2570xA030A[6]
2570xA028A[5]
2570xA020A[4]
2560xA018A[3]
2560xA010A[2]
2560xA008A[1]
2560xA000A[0]

7

Example 1: Cache Misses and Hits

Hit2550xDFF8A[2047]
Hit2550xDFF0A[2046]
Hit2550xDFE8A[2045]

Cold startMiss2550xDFE0A[2044]
........
..

Hit2570xA038A[7]
Hit2570xA030A[6]
Hit2570xA028A[5]

Cold startMiss2570xA020A[4]
Hit2560xA018A[3]
Hit2560xA010A[2]

Hit2560xA008A[1]
Cold startMiss2560xA000A[0]

Cold start miss: we
assume that the cache is
initially empty. Also called
a Compulsory Miss

Hit ratio of our loop is
75% -- there are 1536
hits out of 2048 memory
accesses

This is entirely due to
spatial locality of
reference.

If the loop was preceded
by a loop that accessed
all array elements, the hit
ratio of our loop would be
100%, 25% due to
temporal locality and 75%
due to spatial locality

Cold start miss: we
assume that the cache is
initially empty. Also called
a Compulsory Miss

Cold start miss: we
assume that the cache is
initially empty. Also called
a Compulsory Miss

8

Example 1 with double A[4096]
Why should it make a difference?
 Consider the case where the loop is preceded by

another loop that accesses all array elements in
order

 The entire array no longer fits into the cache –
cache size: 16KB, array size: 32KB

 After execution of the previous loop, the second half
of the array will be in cache

 Analysis: our loop sees misses as we just saw
 Called Capacity Misses as they would not be misses

if the cache had been big enough

9

Example 2: Vector Dot Product
double A[2048], B[2048], sum=0.0;
for (i=0; i<2048, i++) sum = sum +A[i] * B[i];

• Reference sequence:
• load A[0] load B[0] load A[1] load B[1] …

• Assume base addresses of A and B are
0xA000 and 0xE000

• Again, size of array elements is 8B so that 4
consecutive array elements fit into each
cache block

Offset: 5bIndex: 9bTag : 18b

10

Example 2: Vector Dot Product

ConflictMiss511....
........
..

ConflictMiss2560xE018B[3]
ConflictMiss2560xA018A[3]
ConflictMiss2560xE010B[2]
ConflictMiss2560xA010A[2]
ConflictMiss2560xE008B[1]
ConflictMiss2560xA008A[1]

Cold startMiss2560xE000B[0]
Cold startMiss2560xA000A[0]

Offset: 5bIndex: 9bTag : 18b

000000000000000010 100000000 00000
000000000000000011 100000000 00000
000000000000000010 100000000 01000
000000000000000011 100000000 01000
000000000000000010 100000000 10000
000000000000000011 100000000 10000
000000000000000010 100000000 11000
000000000000000011 100000000 11000

11

Example 2: Cache Hits and Misses

ConflictMiss5110xFFF8B[1023]
........
..

ConflictMiss2560xE018B[3]
ConflictMiss2560xA018A[3]
ConflictMiss2560xE010B[2]
ConflictMiss2560xA010A[2]
ConflictMiss2560xE008B[1]
ConflictMiss2560xA008A[1]

Cold startMiss2560xE000B[0]
Cold startMiss2560xA000A[0]

Conflict miss: a miss due to
conflicts in cache block
requirements from memory
accesses of the same
program

Hit ratio for our program:
0%

Source of the problem: the
elements of arrays A and B
accessed in order have the
same cache index

Hit ratio would be better if
the base address of B is
such that these cache
indices differ

12

Example 2 with Packing
• Assume that compiler assigns addresses as

variables are encountered in declarations
• To shift base address of B enough to make

cache index of B[0] different from that of A[0]
double A[2052], B[2048];

• Base address of B is now 0xE020
• 0xE020 is 1110 0000 0010 0000
 Cache index of B[0] is 257; B[0] and A[0] do not

conflict for the same cache block
 Hit ratio of our loop would then be 75%

double A[2048], d1, d2, d3, d4, B[2048];

