
High Performance Computing
Lecture 32

Matthew Jacob

Indian Institute of Science

2

Reality Check

 Question 1: Are real caches built to work on
virtual addresses or physical addresses?

 Question 2: Do modern processors use
pipelining of the kind that we studied?

3

Q1: Caches and Address Translation

MMU Cache
Virtual

Address
Physical
Address

MMUCache
Virtual

Address
Virtual

Address
Physical
Address

“Physical Addressed Cache”

“Virtual Addressed Cache”

(if cache
miss)

(to main
memory)

4

Which is less preferable?
 Physical addressed cache
 Hit time higher (cache access after translation)

 Virtual addressed cache
 Data/instruction of different processes with same virtual

address in cache at the same time …
 Flush cache on context switch, or
 Include Process id as part of each cache directory entry

 Synonyms
 Virtual addresses that translate to same physical address
 More than one copy of a block in cache …

5

Another possibility: Overlapped operation

MMU

Cache

Virtual
Address

Physical
Address

Indexing into
cache directory

using virtual
address

Tag comparison
using physical

address

Virtual indexed physical tagged cache

6

Addresses and Caches
 `Physical Addressed Cache’

Physical Indexed Physical Tagged
 `Virtual Addressed Cache’

Virtual Indexed Virtual Tagged
 Overlapped cache indexing and translation

Virtual Indexed Physical Tagged

7

Cache Tag
16 bits

Physical Page No
18 bits

Physical Indexed Physical Tagged Cache

Virtual Address
Virtual Page No

18 bits
Page Offset

14 bits

C
offset

MMU

Physical Address

=
Physical Cache 5

16KB page size

64KB direct mapped
cache with 32B block
size

C-Index
11 bits
Page Offset

14 bits

8

Virtual Index Virtual Tagged Cache

Virtual Address

Physical Address

=

VPN
18 bits

Block
offset

C-Index
11 bits

MMU

5

Page Offset
14 bits

PPN
18 bits

Hit/Miss

9

Virtual Index Physical Tagged Cache

Virtual Address

Physical Address

=

VPN
18 bits

Block
offset

C-Index
11 bits

MMU

Cache Tag
16 bits

5

Page Offset
14 bits

10

Reality Check

 Question 1: Are real caches built to work on
virtual addresses or physical addresses?

 Question 2: Do modern processors use
pipelining of the kind that we studied?

11

Q2: High Performance Pipelined Processors

 Pipelining
 Overlaps execution of consecutive instructions
 Performance of processor improves

 Current processors use more aggressive
techniques for more performance

 Some exploit Instruction Level Parallelism -
often, many consecutive instructions are
independent of each other and can be
executed in parallel (at the same time)

12

Instruction Level Parallelism Processors
 Challenge: identifying which instructions are

independent
 Approach 1: build processor hardware to

analyze and keep track of dependences
 Superscalar processors

13

Instruction Level Parallelism Processors
 Challenge: identifying which instructions are

independent
 Approach 1: build processor hardware to

analyze and keep track of dependences
 Approach 2: compiler does analysis and

packs suitable instructions together for
parallel execution by processor
 VLIW (very long instruction word) processors

14

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

15

TIMING AND PROFILING
 Profiling: Identifying the important parts of

your program
Concentrate your optimization efforts on those parts

 Timing: Determining program execution time

16

Timing
Timing: measuring the time spent in specific

parts of your program
• Examples of `parts’: Functions, loops, …
• Recall: Different kinds of time that can be

measured (real/wallclock/elapsed vs
virtual/CPU)

1. Decide
• which time you are interested in measuring
• at what granularity

2. Find out what mechanisms are available
and their granularity of measurement

17

time command
Usage: % time a.out

Example: % time ls
0.00user 0.002sys 0:0.003elapsed

Example: % time man csh
0.268user 0.032sys 0:15.486elapsed

Reports Real/Elapsed/Wallclock
time, CPU time in user mode,
CPU time in system mode

18

gettimeofday()
#include <sys/time.h>

int gettimeofday(struct timeval *tv, struct timezone *tz);

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};

Usage: Insert calls to gettimeofday in your C program

Reports real time that has
elapsed since 00:00 GMT 1
January 1970 (The Epoch)

19

Using gettimeofday()

struct timeval before, after;

gettimeofday(&before);
/
/ region of program you want to time
/

gettimeofday(&after);

printf (“%d\n”,);after.tv_sec – before.tv_sec

Your C program

20

High resolution, real timers
 Most modern processors provide a

hardware cycle counting mechanism
1. A special purpose register that is

incremented every clock cycle
2. An instruction to read the value in that

register
 Example: Intel® time stamp counter

and rdtsc instruction

21

Profiling
 Profiler: A tool that helps you identify the

`important’ parts of your program to concentrate
your optimization efforts

 Profile: a breakup (of execution time) across
the different parts of the program

 Can be done by adding statements to your
program (instrumentation) -- so that during
execution, data is gathered, outputted and
possibly processed later

 Automation: where a profiling tool adds those
instructions into your program for you

22

Profiling Mechanisms
 Levels of Granularity typically supported
 Function level
 Statement level
 Basic block level: A basic block is a sequence of

contiguous instructions in a program with a single
entry point (the first instruction in the basic block)
and a single exit point (the last instruction in the
basic block)

 Two examples of profile data
 execution time
 execution counts

 We will look at examples of profiling mechanisms
at the function and basic block level

