High Performance Computing
Lecture 32

Matthew Jacob

Indian Institute of Science

Reality Check

Question 1: Are real caches built to work on
virtual addresses or physical addresses?

Question 2: Do modern processors use
pipelining of the kind that we studied?

Q1: Caches and Address Translation

“Physical Addressed Cache”

|
Virtual Physical
Address @ Address ‘
Virtual Virtual Physical
Address tAddress #@Addreg,s
: (if cache (to main

MISS) memory)

“Virtual Addressed Cache”

Which is less preferable?

Physical addressed cache
o Hit time higher (cache access after translation)

Virtual addressed cache

o Data/instruction of different processes with same virtual
address in cache at the same time ...

Flush cache on context switch, or
Include Process id as part of each cache directory entry

2 Synonyms
Virtual addresses that translate to same physical address

More than one copy of a block in cache ...

Another possibility: Overlapped operation

Virtual @ Physical

Address / Address
Indexing into Tag_ Compar.ison
cache directory using physical
using virtual address
address

Virtual indexed physical tagged cache

Addresses and

Caches

"Physical Addressed Cache’
Physical Indexed Physical Tagged
“Virtual Addressed Cache’

Virtual Indexec
Overlapped cac
Virtual Indexec

Virtual Tagged
ne indexing and translation

Physical Tagged

Physical Indexed Physical Tagged Cache

16KB page size

size

64KB direct mapped
cache with 32B block ™

(=)

7 Physical Cache

]

Virtual Page No | Page Offset _
18 bits 14 bits Virtual Address
A)
1 i
MMU
5
Page Offset | | physical Address
14 bits
7
Y

Virtual Index Virtual Tagged Cache

N

J

]

Hit/Miss

~ N E
VPN C-Index |Block
18 bits 11 bits |offset
N Y,
i |
MMU
Page Offset

14 bits

Virtual Address

Physical Address

Virtual Index Physical Tagged Cache

=

) . |5
VPN C-Index |Block
18 bits 11 bits |offset
" J
N \ D, .
MMU

Page Offset
14 bits

Virtual Address

Physical Address

Reality Check

Question 2: Do modern processors use
pipelining of the kind that we studied?

10

Q2: High Performance Pipelined Processors

Pipelining
o Overlaps execution of consecutive instructions
o Performance of processor improves

Current processors use more aggressive
techniques for more performance

Some exploit Instruction Level Parallelism -
often, many consecutive instructions are
Independent of each other and can be
executed in parallel (at the same time)

11

Instruction Level Parallelism Processors

Challenge: identifying which instructions are

Independent

Approach 1.
analyze and

0 Superscalar

pouild processor hardware to
Keep track of dependences

PDIrocCessors

12

Instruction Level Parallelism Processors

Approach 2: compiler does analysis and
packs suitable instructions together for
parallel execution by processor

o VLIW (very long instruction word) processors

13

7. Program profiling (2)

8. File systems: Disk management, Name management,
Protection (4)

9. Parallel programming: Inter-process communication,
Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

14

TIMING AND PROFILING

2 Profiling: Identifying the important parts of
your program
Concentrate your optimization efforts on those parts

2 Timing: Determining program execution time

15

Timing
Timing: measuring the time spent in specific
parts of your program

Examples of parts’: Functions, loops, ...

Recall: Different kinds of time that can be
measured (real/wallclock/elapsed vs
virtual/CPU)

1. Decide
which time you are interested in measuring
at what granularity

2. Find out what mechanisms are available
and their granularity of measurement

16

time command

Usage: % time a.out

Reports Real/Elapsed/Wallclock

O/ time, CPU time in user mode,
Example: % time Is CPU time in system mode

0.00user 0.002sys 0:0.003elapsed

Example: % time man csh
0.268user 0.032sys 0:15.486elapsed

17

: Reports real time that has
gettlmeOfday() elapsed since 00:00 GMT 1

#include <sysftime.h> January 1970 (The Epoch)

Int gettimeofday(struct timeval *tv, struct timezone *tz);
struct timeval {

long tv_sec; [* seconds */
long tv_usec; /* microseconds */

%

Usage: Insert calls to gettimeofday in your C program

18

Using gettimeofday()

Your C program

struct timeval before, after:;

gettimeofday(&before);
/
/ region of program you want to time
/

gettimeofday(&after);

printf (“%d\n”, after.tv_sec — before.tv_sec);

19

High resolution, real timers

Most modern processors provide a
hardware cycle counting mechanism

1. A special purpose register that is
Incremented every clock cycle

2. An Instruction to read the value In that
register

Example: Intel® time stamp counter
and rdtsc instruction

20

Profiling

Profiler: A tool that helps you identify the
‘Important’ parts of your program to concentrate
your optimization efforts

Profile: a breakup (of execution time) across
the different parts of the program

Can be done by adding statements to your
program (instrumentation) -- so that during
execution, data is gathered, outputted and
possibly processed later

Automation: where a profiling tool adds those
Instructions into your program for you

21

Profiling Mechanisms

Levels of Granularity typically supported
o Function level
o Statement level

o Basic block level: A basic block i1s a sequence of
contiguous instructions in a program with a single
entry point (the first instruction in the basic block)
and a single exit point (the last instruction in the
basic block)

Two examples of profile data

0 execution time

0 execution counts

We will look at examples of profiling mechanisms
at the function and basic block level

22

