
High Performance Computing
Lecture 32

Matthew Jacob

Indian Institute of Science

2

Reality Check

 Question 1: Are real caches built to work on
virtual addresses or physical addresses?

 Question 2: Do modern processors use
pipelining of the kind that we studied?

3

Q1: Caches and Address Translation

MMU Cache
Virtual

Address
Physical
Address

MMUCache
Virtual

Address
Virtual

Address
Physical
Address

“Physical Addressed Cache”

“Virtual Addressed Cache”

(if cache
miss)

(to main
memory)

4

Which is less preferable?
 Physical addressed cache
 Hit time higher (cache access after translation)

 Virtual addressed cache
 Data/instruction of different processes with same virtual

address in cache at the same time …
 Flush cache on context switch, or
 Include Process id as part of each cache directory entry

 Synonyms
 Virtual addresses that translate to same physical address
 More than one copy of a block in cache …

5

Another possibility: Overlapped operation

MMU

Cache

Virtual
Address

Physical
Address

Indexing into
cache directory

using virtual
address

Tag comparison
using physical

address

Virtual indexed physical tagged cache

6

Addresses and Caches
 `Physical Addressed Cache’

Physical Indexed Physical Tagged
 `Virtual Addressed Cache’

Virtual Indexed Virtual Tagged
 Overlapped cache indexing and translation

Virtual Indexed Physical Tagged

7

Cache Tag
16 bits

Physical Page No
18 bits

Physical Indexed Physical Tagged Cache

Virtual Address
Virtual Page No

18 bits
Page Offset

14 bits

C
offset

MMU

Physical Address

=
Physical Cache 5

16KB page size

64KB direct mapped
cache with 32B block
size

C-Index
11 bits
Page Offset

14 bits

8

Virtual Index Virtual Tagged Cache

Virtual Address

Physical Address

=

VPN
18 bits

Block
offset

C-Index
11 bits

MMU

5

Page Offset
14 bits

PPN
18 bits

Hit/Miss

9

Virtual Index Physical Tagged Cache

Virtual Address

Physical Address

=

VPN
18 bits

Block
offset

C-Index
11 bits

MMU

Cache Tag
16 bits

5

Page Offset
14 bits

10

Reality Check

 Question 1: Are real caches built to work on
virtual addresses or physical addresses?

 Question 2: Do modern processors use
pipelining of the kind that we studied?

11

Q2: High Performance Pipelined Processors

 Pipelining
 Overlaps execution of consecutive instructions
 Performance of processor improves

 Current processors use more aggressive
techniques for more performance

 Some exploit Instruction Level Parallelism -
often, many consecutive instructions are
independent of each other and can be
executed in parallel (at the same time)

12

Instruction Level Parallelism Processors
 Challenge: identifying which instructions are

independent
 Approach 1: build processor hardware to

analyze and keep track of dependences
 Superscalar processors

13

Instruction Level Parallelism Processors
 Challenge: identifying which instructions are

independent
 Approach 1: build processor hardware to

analyze and keep track of dependences
 Approach 2: compiler does analysis and

packs suitable instructions together for
parallel execution by processor
 VLIW (very long instruction word) processors

14

Agenda
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

15

TIMING AND PROFILING
 Profiling: Identifying the important parts of

your program
Concentrate your optimization efforts on those parts

 Timing: Determining program execution time

16

Timing
Timing: measuring the time spent in specific

parts of your program
• Examples of `parts’: Functions, loops, …
• Recall: Different kinds of time that can be

measured (real/wallclock/elapsed vs
virtual/CPU)

1. Decide
• which time you are interested in measuring
• at what granularity

2. Find out what mechanisms are available
and their granularity of measurement

17

time command
Usage: % time a.out

Example: % time ls
0.00user 0.002sys 0:0.003elapsed

Example: % time man csh
0.268user 0.032sys 0:15.486elapsed

Reports Real/Elapsed/Wallclock
time, CPU time in user mode,
CPU time in system mode

18

gettimeofday()
#include <sys/time.h>

int gettimeofday(struct timeval *tv, struct timezone *tz);

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};

Usage: Insert calls to gettimeofday in your C program

Reports real time that has
elapsed since 00:00 GMT 1
January 1970 (The Epoch)

19

Using gettimeofday()

struct timeval before, after;

gettimeofday(&before);
/
/ region of program you want to time
/

gettimeofday(&after);

printf (“%d\n”,);after.tv_sec – before.tv_sec

Your C program

20

High resolution, real timers
 Most modern processors provide a

hardware cycle counting mechanism
1. A special purpose register that is

incremented every clock cycle
2. An instruction to read the value in that

register
 Example: Intel® time stamp counter

and rdtsc instruction

21

Profiling
 Profiler: A tool that helps you identify the

`important’ parts of your program to concentrate
your optimization efforts

 Profile: a breakup (of execution time) across
the different parts of the program

 Can be done by adding statements to your
program (instrumentation) -- so that during
execution, data is gathered, outputted and
possibly processed later

 Automation: where a profiling tool adds those
instructions into your program for you

22

Profiling Mechanisms
 Levels of Granularity typically supported
 Function level
 Statement level
 Basic block level: A basic block is a sequence of

contiguous instructions in a program with a single
entry point (the first instruction in the basic block)
and a single exit point (the last instruction in the
basic block)

 Two examples of profile data
 execution time
 execution counts

 We will look at examples of profiling mechanisms
at the function and basic block level

