
High Performance Computing
Lecture 32

Matthew Jacob

Indian Institute of Science



2

Reality Check

 Question 1: Are real caches built to work on 
virtual addresses or physical addresses?

 Question 2: Do modern processors use 
pipelining of the kind that we studied?
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Q1: Caches and Address Translation
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Which is less preferable?
 Physical addressed cache
 Hit time higher (cache access after translation)

 Virtual addressed cache
 Data/instruction of different processes with same virtual 

address in cache at the same time …
 Flush cache on context switch, or
 Include Process id as part of each cache directory entry

 Synonyms
 Virtual addresses that translate to same physical address
 More than one copy of a block in cache …
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Another possibility: Overlapped operation
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Addresses and Caches
 `Physical Addressed Cache’

Physical Indexed Physical Tagged
 `Virtual Addressed Cache’

Virtual Indexed Virtual Tagged
 Overlapped cache indexing and translation

Virtual Indexed Physical Tagged
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Virtual Index Virtual Tagged Cache
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Reality Check

 Question 1: Are real caches built to work on 
virtual addresses or physical addresses?

 Question 2: Do modern processors use 
pipelining of the kind that we studied?
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Q2: High Performance Pipelined Processors

 Pipelining
 Overlaps execution of consecutive instructions
 Performance of processor improves

 Current processors use more aggressive 
techniques for more performance

 Some exploit Instruction Level Parallelism -
often, many consecutive instructions are 
independent of each other and can be 
executed in parallel (at the same time)
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Instruction Level Parallelism Processors
 Challenge: identifying which instructions are 

independent
 Approach 1: build processor hardware to 

analyze and keep track of dependences
 Superscalar processors
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Instruction Level Parallelism Processors
 Challenge: identifying which instructions are 

independent
 Approach 1: build processor hardware to 

analyze and keep track of dependences
 Approach 2: compiler does analysis and 

packs suitable instructions together for 
parallel execution by processor
 VLIW (very long instruction word) processors
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Agenda
1. Program execution: Compilation, Object files, Function call     

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set 

architecture,  Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,                      

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,          

Protection (4)
9. Parallel programming: Inter-process communication, 

Synchronization, Mutual exclusion, Parallel architecture, 
Programming with message passing using MPI (5)
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TIMING AND PROFILING
 Profiling: Identifying the important parts of 

your program
Concentrate your optimization efforts on those parts

 Timing: Determining program execution time
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Timing
Timing: measuring the time spent in specific 

parts of your program
• Examples of `parts’: Functions, loops, …
• Recall: Different kinds of time that can be 

measured (real/wallclock/elapsed vs 
virtual/CPU)

1. Decide
• which time you are interested in measuring
• at what granularity

2. Find out what mechanisms are available 
and their granularity of measurement
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time command
Usage:   % time  a.out

Example: % time ls
0.00user  0.002sys  0:0.003elapsed

Example: % time man csh
0.268user  0.032sys  0:15.486elapsed

Reports Real/Elapsed/Wallclock
time, CPU time in user mode, 
CPU time in system mode
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gettimeofday( )
#include <sys/time.h>

int gettimeofday(struct timeval *tv, struct timezone *tz);

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

}; 

Usage: Insert calls to gettimeofday in your C program

Reports real time that has 
elapsed since 00:00 GMT 1 
January 1970  (The Epoch)
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Using gettimeofday( )

struct timeval before, after;

gettimeofday(&before);
/
/ region of program you want to time
/

gettimeofday(&after);

printf (“%d\n”,                                              );after.tv_sec – before.tv_sec

Your C program
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High resolution, real timers
 Most modern processors provide a 

hardware cycle counting mechanism
1. A special purpose register that is 

incremented every clock cycle
2. An instruction to read the value in that 

register
 Example: Intel® time stamp counter 

and rdtsc instruction
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Profiling
 Profiler: A tool that helps you identify the 

`important’ parts of your program to concentrate 
your optimization efforts

 Profile: a breakup (of execution time) across 
the different parts of the program

 Can be done by adding statements to your 
program (instrumentation) -- so that during 
execution, data is gathered, outputted and 
possibly processed later

 Automation: where a profiling tool adds those 
instructions into your program for you
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Profiling Mechanisms
 Levels of Granularity typically supported
 Function level
 Statement level
 Basic block level: A basic block is a sequence of 

contiguous instructions in a program with a single 
entry point (the first instruction in the basic block) 
and a single exit point (the last instruction in the 
basic block)

 Two examples of profile data
 execution time
 execution counts

 We will look at examples of profiling mechanisms 
at the function and basic block level


