High Performance Computing
Lecture 33

Matthew Jacob

Indian Institute of Science

Profiling

Profiler: A tool that helps you identify the
‘Important’ parts of your program to concentrate
your optimization efforts

Profile: a breakup (of execution time) across
the different parts of the program

Can be done by adding statements to your
program (instrumentation) -- so that during
execution, data is gathered, outputted and
possibly processed later

Automation: where a profiling tool adds those
Instructions into your program for you

Profiling Mechanisms

Levels of Granularity typically supported
o Function level
o Statement level

o Basic block level: A basic block i1s a sequence of
contiguous instructions in a program with a single
entry point (the first instruction in the basic block)
and a single exit point (the last instruction in the
basic block)

Two examples of profile data
o execution time
o execution counts

We will look at examples of profiling mechanisms
at the function and basic block level

Why Function Level Profiling?

How useful can it be to identify and optimize a
few functions of a program?

Example: LINPACK Benchmark

o LINPACK: A Linear Algebra package

o The benchmark solves a large system of linear
equations by Gaussian elimination using LINPACK
routines

Benchmark programs are used to compare the
performance of computer systems

o It spends most (~70%) of its run time in SAXPY

Prof: UNIX Function Level Profiling

= Usage
% cc —p program.c /generates instrumented a.out
% a.out | execution; instrumentation
/ generates data and mon.out
% prof |/ processing of profile data

= Output gives a function by function breakup
of execution time

= Useful in identifying which functions to
concentrate optimization efforts on

How prof works

The instrumentation does three things

1. At entry of each function: increment an execution
count for that function

2. At program entry: make a call to system call
profil() to get execution times in each function

3. At program exit: write profile data to an output file
that can later be processed

profil(): execution time profiler

o Generates a histogram of the execution time In
each function

What profil() does

One of the parameters in call to profil() Is a
buffer

It Is used as an array of counters initialized to O

The array elements are associated with
contiguous regions of the program text
During program execution

o PC value i1s sampled

0 once every clock tick (typical default: 10 msec)
o triggered by the hardware timer interrupt

Corresponding buffer element is incremented

What profil() does ___Program text

profil() buffer

main() 0x00000000
Every 10 msec 0
iﬂ?lgé(()) PC value
func3() scaled to a
I value between
unc4() 0 and bufsize-1
func5()
And that buffer
func6() counter is
Incremented

func7()
func8()

bufsize-1

0xO000FA4DO0

Output: Matrix Multiply

%Time

91.0
5.4
1.2
0.9
0.4
0.2
0.0
0.0
0.0

Seconds

11.79
0.70
0.16
0.12
0.05
0.02

0.00
0.00
0.00

CumSecs

11.79
12.49
12.65
12.77
12.82
12.84

12.96
12.96
12.96

#Calls Name

10000
10000
10000

10000
1

_write
MultStep
_doprnt
__mcount
printf
ReadIn

main
PrintOut
Multiply

Using prof

From how it works, we understand that

o The granularity is at best 10 msec

o The generated profile could differ for multiple runs
of a program running on the same input data
Remember that there could be other programs
running on the same system

This can affect the behaviour of the profiling run in
terms of page faults, cache misses, etc

o And could even be completely wrong

e.g., there could be a particular function that just
happens to be running each time the timer interrupt

OCCUrs

10

Prof giving bad time estimates

Ty ——

—>

10 msec

The prof profile will show
= A0 100% of the execution time

being spent in function A
= B() ISP !

11

Using prof

Some usage guidelines
o Do the profile run under light load conditions

o Do the profiling run a few times and see if the
results vary a lot

o Remember that the function execution counts are
exact, even though the execution times are only
estimates

12

Pixie: Basic Block Level Profiling

A different style of profiling

Usage

% cc program.c [a.out

% pixie a.out / Instrumented a.out.pixie
% a.out.pixie [profile output file

% prof / report on profile data

Output is based on basic block level
execution counts

Useful for all kinds of things

13

What is a Basic Block?

A section of program that does not cross any
conditional branches, loop boundaries or other
transfers of control

A sequence of instructions with a single entry
point, single exit point, and no internal branches

A sequence of program statements that contains
no labels and no branches

A basic block can only be executed completely
and in sequence

14

Pixie: How It works

1.

2.

ldentification of basic blocks
Q: How can basic blocks be identified?
Pixie uses heuristics where necessary

Instrumentation

15

|dentifying Basic Blocks of a Program

Basic blocks are defined by control transfer
Instructions and their targets

Program Text

—P

—P

—

Problem case:

JR RS

e Target address known only when
program runs

« Target address can be different
each time instruction is executed

16

Pixie: How It works
1.

2. Instrumentation
e |ncrement a counter for the basic block

« On program entry and exit: initialization of data
structures; writing profile output file

17

How Intrusive are these mechanisms?

Issue: Does the instrumented program
behave enough like the original program?

o If not, the profile generated might mislead the
direction of program optimization efforts

18

How Intrusive are these mechanisms?

Pixie
o The instrumented executable program can be
much larger than the original program

19

Pixie Instrumentation

In each basic block, instructions must be
added to iIncrement an execution counter for
that basic block

o The counters cannot be maintained in registers
There can be a lot of basic blocks in a program

o At least three MIPS 1 instructions would be
needed
LW R1, counter
ADDI R1,R1,1
SW counter, R1

20

Pixie Instrumentation

How big Is the typical basic block?

How frequent are control transfer
Instructions?
o around 20% of all instructions executed

0 So, average basic block size might be about 5
Instructions

o to which 3 instructions must be added to
Increment the basic block execution count

21

How Intrusive are these mechanisms?

g

Prof: gathers more than just execution counts
o Instrumentation is not very large

22

Other Profiling Tools

Intel® VTune™ Performance Analyzer
o Available for Windows and also for Linux

o Provides a way to access hardware performance
counters

Hardware counting mechanism like the timestamp
counter

A variety of hardware events can be counted during
program execution

Examples: Instructions executed, Cache misses,
Branch mispredictions

23

