
High Performance Computing
Lecture 33

Matthew Jacob

Indian Institute of Science



2

Profiling
 Profiler: A tool that helps you identify the 

`important’ parts of your program to concentrate 
your optimization efforts

 Profile: a breakup (of execution time) across 
the different parts of the program

 Can be done by adding statements to your 
program (instrumentation) -- so that during 
execution, data is gathered, outputted and 
possibly processed later

 Automation: where a profiling tool adds those 
instructions into your program for you



3

Profiling Mechanisms
 Levels of Granularity typically supported
 Function level
 Statement level
 Basic block level: A basic block is a sequence of 

contiguous instructions in a program with a single 
entry point (the first instruction in the basic block) 
and a single exit point (the last instruction in the 
basic block)

 Two examples of profile data
 execution time
 execution counts

 We will look at examples of profiling mechanisms 
at the function and basic block level



4

Why Function Level Profiling?
 How useful can it be to identify and optimize a 

few functions of a program?
 Example: LINPACK Benchmark
 LINPACK: A Linear Algebra package
 The benchmark solves a large system of linear 

equations by Gaussian elimination using LINPACK 
routines
 Benchmark programs are used to compare the 

performance of computer systems
 It spends most (~70%) of its run time in SAXPY



5

Prof: UNIX Function Level Profiling
 Usage

% cc –p program.c  /generates instrumented a.out
% a.out                    / execution; instrumentation

/ generates data and mon.out
% prof                      / processing of profile data

 Output gives a function by function breakup 
of execution time

 Useful in identifying which functions to 
concentrate optimization efforts on



6

How prof works
 The instrumentation does three things

1. At entry of each function: increment an execution 
count for that function

2. At program entry: make a call to system call 
profil() to get execution times in each function

3. At program exit: write profile data to an output file 
that can later be processed

 profil(): execution time profiler
 Generates a histogram of the execution time in 

each function



7

What profil( ) does
 One of the parameters in call to profil() is a 

buffer
 It is used as an array of counters initialized to 0
 The array elements are associated with 

contiguous regions of the program text
 During program execution
 PC value is sampled
 once every clock tick (typical default: 10 msec)
 triggered by the hardware timer interrupt

 Corresponding buffer element is incremented



8

What profil( ) does Program text

main()

func1()
func2()
func3()

func4()

func5()

func6()

func7()
func8()

0x00000000

0x000FA4D0

profil( ) buffer

PC value

0

bufsize-1

scaled to a 
value between 
0 and bufsize-1

Every 10 msec

And that buffer 
counter is 
incremented



9

Output: Matrix Multiply
%Time Seconds CumSecs #Calls Name
91.0 11.79 11.79 10000 _write

5.4 0.70 12.49 10000 MultStep
1.2 0.16 12.65 10000 _doprnt
0.9 0.12 12.77 _mcount
0.4 0.05 12.82 10000 printf
0.2 0.02 12.84 1 ReadIn

…
0.0 0.00 12.96 1 main
0.0 0.00 12.96 1 PrintOut
0.0 0.00 12.96 1 Multiply



10

Using prof
 From how it works, we understand that
 The granularity is at best 10 msec
 The generated profile could differ for multiple runs 

of a program running on the same input data
 Remember that there could be other programs 

running on the same system
 This can affect the behaviour of the profiling run in 

terms of page faults, cache misses, etc
 And could even be completely wrong
 e.g., there could be a particular function that just 

happens to be running each time the timer interrupt 
occurs



11

Prof giving bad time estimates

10 msec

A( )

B( )

The prof profile will show 
100% of the execution time 
being spent in function A()



12

Using prof
 Some usage guidelines
 Do the profile run under light load conditions
 Do the profiling run a few times and see if the 

results vary a lot
 Remember that the function execution counts are 

exact, even though the execution times are only 
estimates



13

Pixie: Basic Block Level Profiling
 A different style of profiling
 Usage

% cc program.c / a.out
% pixie a.out     / instrumented a.out.pixie
% a.out.pixie     / profile output file
% prof / report on profile data

 Output is based on basic block level 
execution counts

 Useful for all kinds of things 



14

What is a Basic Block?
 A section of program that does not cross any 

conditional branches, loop boundaries or other 
transfers of control

 A sequence of instructions with a single entry 
point, single exit point, and no internal branches

 A sequence of program statements that contains 
no labels and no branches

 A basic block can only be executed completely 
and in sequence



15

Pixie: How it works
1. Identification of basic blocks

• Q: How can basic blocks be identified?
• Pixie uses heuristics where necessary

2. Instrumentation



16

Identifying Basic Blocks of a Program
 Basic blocks are defined by control transfer 

instructions and their targets
Program Text Problem case:

JR   R8
• Target address known only when 
program runs

• Target address can be different 
each time instruction is executed



17

Pixie: How it works
1. Identification of basic blocks

• Q: How can basic blocks be identified?
• Pixie uses heuristics where necessary

2. Instrumentation
• Increment a counter for the basic block
• On program entry and exit: initialization of data 

structures; writing profile output file



18

How intrusive are these mechanisms?
 Issue: Does the instrumented program 

behave enough like the original program?
 If not, the profile generated might mislead the 

direction of program optimization efforts



19

How intrusive are these mechanisms?
 Pixie
 The instrumented executable program can be 

much larger than the original program



20

Pixie instrumentation
 In each basic block, instructions must be 

added to increment an execution counter for 
that basic block
 The counters cannot be maintained in registers
 There can be a lot of basic blocks in a program

 At least three MIPS 1 instructions would be 
needed
 LW   R1, counter
 ADDI  R1, R1, 1
 SW counter, R1



21

Pixie instrumentation
 How big is the typical basic block?
 How frequent are control transfer 

instructions?
 around 20% of all instructions executed
 So, average basic block size might be about 5 

instructions
 to which 3 instructions must be added to 

increment the basic block execution count



22

How intrusive are these mechanisms?
 Pixie
 The instrumented executable program can be 

much larger than the original program
 Does not matter; basic block execution counts are 

accurate
 Prof: gathers more than just execution counts
 Instrumentation is not very large



23

Other Profiling Tools
 Intel® VTune™ Performance Analyzer
 Available for Windows and also for Linux
 Provides a way to access hardware performance 

counters
 Hardware counting mechanism like the timestamp 

counter
 A variety of hardware events can be counted during 

program execution
 Examples: Instructions executed, Cache misses, 

Branch mispredictions


