
High Performance Computing
Lecture 33

Matthew Jacob

Indian Institute of Science

2

Profiling
 Profiler: A tool that helps you identify the

`important’ parts of your program to concentrate
your optimization efforts

 Profile: a breakup (of execution time) across
the different parts of the program

 Can be done by adding statements to your
program (instrumentation) -- so that during
execution, data is gathered, outputted and
possibly processed later

 Automation: where a profiling tool adds those
instructions into your program for you

3

Profiling Mechanisms
 Levels of Granularity typically supported
 Function level
 Statement level
 Basic block level: A basic block is a sequence of

contiguous instructions in a program with a single
entry point (the first instruction in the basic block)
and a single exit point (the last instruction in the
basic block)

 Two examples of profile data
 execution time
 execution counts

 We will look at examples of profiling mechanisms
at the function and basic block level

4

Why Function Level Profiling?
 How useful can it be to identify and optimize a

few functions of a program?
 Example: LINPACK Benchmark
 LINPACK: A Linear Algebra package
 The benchmark solves a large system of linear

equations by Gaussian elimination using LINPACK
routines
 Benchmark programs are used to compare the

performance of computer systems
 It spends most (~70%) of its run time in SAXPY

5

Prof: UNIX Function Level Profiling
 Usage

% cc –p program.c /generates instrumented a.out
% a.out / execution; instrumentation

/ generates data and mon.out
% prof / processing of profile data

 Output gives a function by function breakup
of execution time

 Useful in identifying which functions to
concentrate optimization efforts on

6

How prof works
 The instrumentation does three things

1. At entry of each function: increment an execution
count for that function

2. At program entry: make a call to system call
profil() to get execution times in each function

3. At program exit: write profile data to an output file
that can later be processed

 profil(): execution time profiler
 Generates a histogram of the execution time in

each function

7

What profil() does
 One of the parameters in call to profil() is a

buffer
 It is used as an array of counters initialized to 0
 The array elements are associated with

contiguous regions of the program text
 During program execution
 PC value is sampled
 once every clock tick (typical default: 10 msec)
 triggered by the hardware timer interrupt

 Corresponding buffer element is incremented

8

What profil() does Program text

main()

func1()
func2()
func3()

func4()

func5()

func6()

func7()
func8()

0x00000000

0x000FA4D0

profil() buffer

PC value

0

bufsize-1

scaled to a
value between
0 and bufsize-1

Every 10 msec

And that buffer
counter is
incremented

9

Output: Matrix Multiply
%Time Seconds CumSecs #Calls Name
91.0 11.79 11.79 10000 _write

5.4 0.70 12.49 10000 MultStep
1.2 0.16 12.65 10000 _doprnt
0.9 0.12 12.77 _mcount
0.4 0.05 12.82 10000 printf
0.2 0.02 12.84 1 ReadIn

…
0.0 0.00 12.96 1 main
0.0 0.00 12.96 1 PrintOut
0.0 0.00 12.96 1 Multiply

10

Using prof
 From how it works, we understand that
 The granularity is at best 10 msec
 The generated profile could differ for multiple runs

of a program running on the same input data
 Remember that there could be other programs

running on the same system
 This can affect the behaviour of the profiling run in

terms of page faults, cache misses, etc
 And could even be completely wrong
 e.g., there could be a particular function that just

happens to be running each time the timer interrupt
occurs

11

Prof giving bad time estimates

10 msec

A()

B()

The prof profile will show
100% of the execution time
being spent in function A()

12

Using prof
 Some usage guidelines
 Do the profile run under light load conditions
 Do the profiling run a few times and see if the

results vary a lot
 Remember that the function execution counts are

exact, even though the execution times are only
estimates

13

Pixie: Basic Block Level Profiling
 A different style of profiling
 Usage

% cc program.c / a.out
% pixie a.out / instrumented a.out.pixie
% a.out.pixie / profile output file
% prof / report on profile data

 Output is based on basic block level
execution counts

 Useful for all kinds of things

14

What is a Basic Block?
 A section of program that does not cross any

conditional branches, loop boundaries or other
transfers of control

 A sequence of instructions with a single entry
point, single exit point, and no internal branches

 A sequence of program statements that contains
no labels and no branches

 A basic block can only be executed completely
and in sequence

15

Pixie: How it works
1. Identification of basic blocks

• Q: How can basic blocks be identified?
• Pixie uses heuristics where necessary

2. Instrumentation

16

Identifying Basic Blocks of a Program
 Basic blocks are defined by control transfer

instructions and their targets
Program Text Problem case:

JR R8
• Target address known only when
program runs

• Target address can be different
each time instruction is executed

17

Pixie: How it works
1. Identification of basic blocks

• Q: How can basic blocks be identified?
• Pixie uses heuristics where necessary

2. Instrumentation
• Increment a counter for the basic block
• On program entry and exit: initialization of data

structures; writing profile output file

18

How intrusive are these mechanisms?
 Issue: Does the instrumented program

behave enough like the original program?
 If not, the profile generated might mislead the

direction of program optimization efforts

19

How intrusive are these mechanisms?
 Pixie
 The instrumented executable program can be

much larger than the original program

20

Pixie instrumentation
 In each basic block, instructions must be

added to increment an execution counter for
that basic block
 The counters cannot be maintained in registers
 There can be a lot of basic blocks in a program

 At least three MIPS 1 instructions would be
needed
 LW R1, counter
 ADDI R1, R1, 1
 SW counter, R1

21

Pixie instrumentation
 How big is the typical basic block?
 How frequent are control transfer

instructions?
 around 20% of all instructions executed
 So, average basic block size might be about 5

instructions
 to which 3 instructions must be added to

increment the basic block execution count

22

How intrusive are these mechanisms?
 Pixie
 The instrumented executable program can be

much larger than the original program
 Does not matter; basic block execution counts are

accurate
 Prof: gathers more than just execution counts
 Instrumentation is not very large

23

Other Profiling Tools
 Intel® VTune™ Performance Analyzer
 Available for Windows and also for Linux
 Provides a way to access hardware performance

counters
 Hardware counting mechanism like the timestamp

counter
 A variety of hardware events can be counted during

program execution
 Examples: Instructions executed, Cache misses,

Branch mispredictions

