High Performance Computing
Lecture 37

Matthew Jacob

Indian Institute of Science



File System Performance ldeas

The main concern: A disk read/write takes a
few msecs to complete

Sequential access: Reading a file byte by
byte
- Using read(): One system call per byte read

- Alternative: Standard 1/O library (stdio)
fopen(), fread(), fwrite(), etc
Maintains a buffer data read from disk

Overhead: There is more copying of the data that was
read from the disk

Disk -> Stdio buffer -> Your program’s buffer



File System Performance ldeas

Disk Block Caching

. The system maintains in main memory copies of
recently used disk blocks

. Called the disk block buffer cache

. They can be accessed from this buffer the next
time they are required

. Could be managed using an LRU like policy

- Problem: If the system crashes, file data in the
buffer cache will be lost

The OS periodically flushes the contents of the
cache to disk (say once every 30 secs)



File System Performance ldeas

Disk Block Pre-fetching

- Prefetching: Reading something into a cache or
buffer before it Is actually required

- ldea: If a file Is being read sequentially, a few
blocks can be read ahead from the disk



File System Performance ldeas

Memory Mapped Files

- Idea: Map file into the virtual address space of the
process that is accessing it



Memory Mapped Files

Process

et S—

data _catafie

heap
'

T

stack




Memory Mapped Files

Traditional open, /Iseek/read/write, close are
Inefficient due to system calls, data copying

Alternative: map file into process virtual
address space

Access file contents using memory
addresses (variables, pointers)

Could result in a page fault if that part of the
file 1s not currently in memory

System call: mmap(addr,len,prot,flags,fd,off)
Some OS’s: cat, cp use mmap for file access



File System Performance ldeas

Asynchronous I/O

. Ildea: In ordinary file 1/O operations (e.g., read),
the process has to wait (block) for the disk
operations to complete before proceeding to use
the file data

. But the I/O could be made non-blocking



Asynchronous 1/0

Objective: allow programmer to write his/her
program to perform I/O without blocking

eg. SunOS aioread, aiowrite library calls
o aloread(fd, buff, numbytes, offset, whence, result)

Reads numbytes bytes of data from the file
descriptor fd into the buffer buff, without blocking
the process

The buffer should not be referenced until after the
operation is completed; until then it is in use by the
OS

Mechanisms are provided for the process to be
notified of the actual completion of the I/O
operation



File System Performance ldeas

Disk Block Buffering/Caching
Disk Block Pre-fetching
Memory Mapped Files
Asynchronous I/O

10



