
High Performance Computing
Lecture 37

Matthew Jacob

Indian Institute of Science

2

File System Performance Ideas
• The main concern: A disk read/write takes a

few msecs to complete
• Sequential access: Reading a file byte by

byte
• Using read(): One system call per byte read
• Alternative: Standard I/O library (stdio)

• fopen(), fread(), fwrite(), etc
• Maintains a buffer data read from disk
• Overhead: There is more copying of the data that was

read from the disk
• Disk -> Stdio buffer -> Your program’s buffer

3

File System Performance Ideas
• Disk Block Caching

• The system maintains in main memory copies of
recently used disk blocks

• Called the disk block buffer cache
• They can be accessed from this buffer the next

time they are required
• Could be managed using an LRU like policy
• Problem: If the system crashes, file data in the

buffer cache will be lost
• The OS periodically flushes the contents of the

cache to disk (say once every 30 secs)

4

File System Performance Ideas
• Disk Block Buffering/Caching
• Disk Block Pre-fetching

• Prefetching: Reading something into a cache or
buffer before it is actually required

• Idea: If a file is being read sequentially, a few
blocks can be read ahead from the disk

5

File System Performance Ideas
• Disk Block Buffering/Caching
• Disk Block Pre-fetching
• Memory Mapped Files

• Idea: Map file into the virtual address space of the
process that is accessing it

6

Memory Mapped Files

text

data

heap

stack

Process

datafile

7

Memory Mapped Files
 Traditional open, /lseek/read/write, close are

inefficient due to system calls, data copying
 Alternative: map file into process virtual

address space
 Access file contents using memory

addresses (variables, pointers)
 Could result in a page fault if that part of the

file is not currently in memory
 System call: mmap(addr,len,prot,flags,fd,off)
 Some OS’s: cat, cp use mmap for file access

8

File System Performance Ideas
• Disk Block Buffering/Caching
• Disk Block Pre-fetching
• Memory Mapped Files
• Asynchronous I/O

• Idea: In ordinary file I/O operations (e.g., read),
the process has to wait (block) for the disk
operations to complete before proceeding to use
the file data

• But the I/O could be made non-blocking

9

Asynchronous I/O
 Objective: allow programmer to write his/her

program to perform I/O without blocking
 eg: SunOS aioread, aiowrite library calls

 aioread(fd, buff, numbytes, offset, whence, result)
 Reads numbytes bytes of data from the file

descriptor fd into the buffer buff, without blocking
the process

 The buffer should not be referenced until after the
operation is completed; until then it is in use by the
OS

 Mechanisms are provided for the process to be
notified of the actual completion of the I/O
operation

10

File System Performance Ideas
• Disk Block Buffering/Caching
• Disk Block Pre-fetching
• Memory Mapped Files
• Asynchronous I/O

