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File System Performance ldeas

The main concern: A disk read/write takes a
few msecs to complete

Sequential access: Reading a file byte by
byte
- Using read(): One system call per byte read

- Alternative: Standard 1/O library (stdio)
fopen(), fread(), fwrite(), etc
Maintains a buffer data read from disk

Overhead: There is more copying of the data that was
read from the disk

Disk -> Stdio buffer -> Your program’s buffer
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Disk Block Caching

. The system maintains in main memory copies of
recently used disk blocks

. Called the disk block buffer cache

. They can be accessed from this buffer the next
time they are required

. Could be managed using an LRU like policy

- Problem: If the system crashes, file data in the
buffer cache will be lost

The OS periodically flushes the contents of the
cache to disk (say once every 30 secs)
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Disk Block Pre-fetching

- Prefetching: Reading something into a cache or
buffer before it Is actually required

- ldea: If a file Is being read sequentially, a few
blocks can be read ahead from the disk
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Memory Mapped Files

- Idea: Map file into the virtual address space of the
process that is accessing it



Memory Mapped Files
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Memory Mapped Files

Traditional open, /Iseek/read/write, close are
Inefficient due to system calls, data copying

Alternative: map file into process virtual
address space

Access file contents using memory
addresses (variables, pointers)

Could result in a page fault if that part of the
file 1s not currently in memory

System call: mmap(addr,len,prot,flags,fd,off)
Some OS’s: cat, cp use mmap for file access
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Asynchronous I/O

. Ildea: In ordinary file 1/O operations (e.g., read),
the process has to wait (block) for the disk
operations to complete before proceeding to use
the file data

. But the I/O could be made non-blocking



Asynchronous 1/0

Objective: allow programmer to write his/her
program to perform I/O without blocking

eg. SunOS aioread, aiowrite library calls
o aloread(fd, buff, numbytes, offset, whence, result)

Reads numbytes bytes of data from the file
descriptor fd into the buffer buff, without blocking
the process

The buffer should not be referenced until after the
operation is completed; until then it is in use by the
OS

Mechanisms are provided for the process to be
notified of the actual completion of the I/O
operation
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Disk Block Buffering/Caching
Disk Block Pre-fetching
Memory Mapped Files
Asynchronous I/O

10



