
High Performance Computing
Lecture 37

Matthew Jacob

Indian Institute of Science

2

File System Performance Ideas
• The main concern: A disk read/write takes a

few msecs to complete
• Sequential access: Reading a file byte by

byte
• Using read(): One system call per byte read
• Alternative: Standard I/O library (stdio)

• fopen(), fread(), fwrite(), etc
• Maintains a buffer data read from disk
• Overhead: There is more copying of the data that was

read from the disk
• Disk -> Stdio buffer -> Your program’s buffer

3

File System Performance Ideas
• Disk Block Caching

• The system maintains in main memory copies of
recently used disk blocks

• Called the disk block buffer cache
• They can be accessed from this buffer the next

time they are required
• Could be managed using an LRU like policy
• Problem: If the system crashes, file data in the

buffer cache will be lost
• The OS periodically flushes the contents of the

cache to disk (say once every 30 secs)

4

File System Performance Ideas
• Disk Block Buffering/Caching
• Disk Block Pre-fetching

• Prefetching: Reading something into a cache or
buffer before it is actually required

• Idea: If a file is being read sequentially, a few
blocks can be read ahead from the disk

5

File System Performance Ideas
• Disk Block Buffering/Caching
• Disk Block Pre-fetching
• Memory Mapped Files

• Idea: Map file into the virtual address space of the
process that is accessing it

6

Memory Mapped Files

text

data

heap

stack

Process

datafile

7

Memory Mapped Files
 Traditional open, /lseek/read/write, close are

inefficient due to system calls, data copying
 Alternative: map file into process virtual

address space
 Access file contents using memory

addresses (variables, pointers)
 Could result in a page fault if that part of the

file is not currently in memory
 System call: mmap(addr,len,prot,flags,fd,off)
 Some OS’s: cat, cp use mmap for file access

8

File System Performance Ideas
• Disk Block Buffering/Caching
• Disk Block Pre-fetching
• Memory Mapped Files
• Asynchronous I/O

• Idea: In ordinary file I/O operations (e.g., read),
the process has to wait (block) for the disk
operations to complete before proceeding to use
the file data

• But the I/O could be made non-blocking

9

Asynchronous I/O
 Objective: allow programmer to write his/her

program to perform I/O without blocking
 eg: SunOS aioread, aiowrite library calls

 aioread(fd, buff, numbytes, offset, whence, result)
 Reads numbytes bytes of data from the file

descriptor fd into the buffer buff, without blocking
the process

 The buffer should not be referenced until after the
operation is completed; until then it is in use by the
OS

 Mechanisms are provided for the process to be
notified of the actual completion of the I/O
operation

10

File System Performance Ideas
• Disk Block Buffering/Caching
• Disk Block Pre-fetching
• Memory Mapped Files
• Asynchronous I/O

