High Performance Computing
Lecture 39

Matthew Jacob

Indian Institute of Science

Cache Coherence Problem

If each processor in a shared memory
multiple processor machine has a data cache

o Potential data consistency problem: the cache
coherence problem

o Shared variable modification, private cache

Objective: processes shouldn’t read stale’
data
Solutions

o Hardware: cache coherence mechanisms
o Software: compiler assisted cache coherence

Example: Write Once Protocol

Assumption: shared bus interconnect where
all cache controllers monitor all bus activity

o Called snooping

There is only one operation through bus at a
time; cache controllers can be built to take
corrective action and enforce coherence iIn
caches

o Corrective action could involve updating or
Invalidating a cache block

Example: Write Once Protocol.

Read X Write X=1

X:
X:

0
1

Read X:

Cach

X: 0

ISS

Snoopy Cache Coherence and Locks

Lock Implementation

while (Test&Set (L));

With snoopy invalidate cache coherence protocol,
spinning on Test&Set leads to lock pingponging

High bus utilization slows down memory accesses

repeat
while (L);
until (! Test&Set (L));

Reads of L will be cache hits — no bus traffic

When lock is available, many spinners may find that
L=0. First one to get Test&Set on bus wins and
causes Iinvalidation of other cache copies

Lock Implementation ...

o But, many processes finding L=0 will all try and do
Test&Set(L) causing a burst of bus traffic

o Could try and prevent all of these processes from
attempting Test&Set at about the same time

repeat

while (L);

walt (different time for each process);
until (! Test&Set (L));

PARALLEL PROGRAMMING

Recall: Flynn's SIMD, MIMD

o How would you describe a program meant to run on
each of these parallel computer classes?

SIMD: Single Program Multiple Data (SPMD)
MIMD: Multiple Program Multiple Data (MPMD)

o The programs could involve cooperating activities
using either

Shared memory: threads with shared variables
Message passing: communication using messages

T

sequential

Speedup =

parallel

How Much Speedup Is Possible?

Let s be the fraction of sequential execution time of a
given program that can not be parallelized

Assume that program is parallelized so that the
remaining part (1 - s) is perfectly divided to run in
parallel across n processors

. 1 1
lim Speedup = —
N—o0 1— S S

S+

: . N . o
l.e., the maximum speedup achievable is limited by the
sequential fraction of the sequential program

Amdahl's Law

Programming with Message Passing

Need

1. Mechanism to create processes to execute on
different processors

2. Mechanism to send/receive message

Must specify the identity of the
communicating process

Example
P1: send(&x, P2) P2: receive(&y, P1)
Message passing libraries

5 PVM (1980s)
5 MPI (1990s)

10

MPI References

1. Using MPI
Gropp, Lusk, Skjellum
www.mcs.anl.gov/mpi/usingmpi

2. MPI. The Complete Reference

Snir, Otto, Huss-Lederman, Walker, Dongarra
www.netlib.org/utk/papers/mpi-book/mpi-book.html

11

Message Passing Interface (MPI)

Standard API

o Hides software/hardware details
o Portable, flexible

Implemented as a library

Your program

MPI Library
Custom Standard
software TCP/IP
Custom Standard
hardware network HW

Key MPI Functions and Constants

MPI1_Init (int *argc, char ***argv)

MPI Finalize (void)

MPI _Comm_rank (MPl_COMM comm, int *rank)
MPl Comm size (MPl_COMM comm, int *size)

MPI Send (void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

MP| Recv (void *buf, int count, MP|_Datatype
datatype, int source, int tag, MPI_Comm comm,
MP|_Status *status)

MPI_CHAR, MPI_INT, MPI_LONG, MPI_BYTE
MPI_ANY_ SOURCE, MPI_ANY_ TAG

13

