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Cache Coherence Problem
 If each processor in a shared memory 

multiple processor machine has a data cache
 Potential data consistency problem: the cache 

coherence problem
 Shared variable modification, private cache

 Objective: processes shouldn’t read `stale’ 
data

 Solutions
 Hardware: cache coherence mechanisms
 Software: compiler assisted cache coherence
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Example: Write Once Protocol
 Assumption: shared bus interconnect where 

all cache controllers monitor all bus activity 
 Called snooping

 There is only one operation through bus at a 
time; cache controllers can be built to take 
corrective action and enforce coherence in 
caches
 Corrective action could involve updating or 

invalidating a cache block



4

X: 0
X: 1

X: 0

Read X Read X

X: 0

Write X=1

X: 1

Read X:  
Cache Miss

P1 P2
Example: Write Once Protocol.
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Snoopy Cache Coherence and Locks
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Lock Implementation
while ( Test&Set (L) );
• With snoopy invalidate cache coherence protocol, 

spinning on Test&Set leads to lock pingponging
• High bus utilization slows down memory accesses

repeat
while (L);

until ( ! Test&Set (L) );
• Reads of L will be cache hits – no bus traffic
• When lock is available, many spinners may find that 

L=0. First one to get Test&Set on bus wins and 
causes invalidation of other cache copies
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Lock Implementation …
 But, many processes finding L=0 will all try and do 

Test&Set(L) causing a burst of bus traffic
 Could try and prevent all of these processes from 

attempting Test&Set at about the same time

repeat
while (L);
wait ( different time for each process );

until ( ! Test&Set (L) );
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PARALLEL PROGRAMMING
 Recall: Flynn’s SIMD, MIMD 

 How would you describe a program meant to run on 
each of these parallel computer classes?
 SIMD: Single Program Multiple Data (SPMD)
 MIMD: Multiple Program Multiple Data (MPMD)

 The programs could involve cooperating activities 
using either
 Shared memory: threads with shared variables
 Message passing: communication using messages

 Speedup =
parallel

sequential

T
T
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Assume that program is parallelized so that the 
remaining part (1 - s) is perfectly divided to run in 
parallel across n processors

How Much Speedup is Possible?

n
ss  1

1
n

lim

Let s be the fraction of sequential execution time of a 
given program that can not be parallelized

Speedup = 
s
1

i.e., the maximum speedup achievable is limited by the 
sequential fraction of the sequential program

Amdahl’s Law
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Programming with Message Passing
 Need

1. Mechanism to create processes to execute on 
different processors

2. Mechanism to send/receive message
 Must specify the identity of the 

communicating process
 Example

P1: send( &x, P2) P2: receive( &y, P1)
 Message passing libraries
 PVM (1980s)
 MPI (1990s)
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MPI References
1. Using MPI

Gropp, Lusk, Skjellum
www.mcs.anl.gov/mpi/usingmpi

2. MPI: The Complete Reference
Snir, Otto, Huss-Lederman, Walker, Dongarra
www.netlib.org/utk/papers/mpi-book/mpi-book.html
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Message Passing Interface (MPI)
Standard API
 Hides software/hardware details
 Portable, flexible

Implemented as a library

Your program

MPI Library

Custom 
software

Standard 
TCP/IP

Standard 
network HW

Custom 
hardware
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Key MPI Functions and Constants
 MPI_Init (int *argc, char ***argv)
 MPI_Finalize (void)
 MPI_Comm_rank (MPI_COMM comm, int *rank)
 MPI_Comm_size (MPI_COMM comm, int *size)
 MPI_Send (void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm)
 MPI_Recv (void *buf, int count, MPI_Datatype

datatype, int source, int tag, MPI_Comm comm, 
MPI_Status *status)

 MPI_CHAR, MPI_INT, MPI_LONG, MPI_BYTE
 MPI_ANY_SOURCE, MPI_ANY_TAG


