
High Performance Computing
Lecture 39

Matthew Jacob

Indian Institute of Science

2

Cache Coherence Problem
 If each processor in a shared memory

multiple processor machine has a data cache
 Potential data consistency problem: the cache

coherence problem
 Shared variable modification, private cache

 Objective: processes shouldn’t read `stale’
data

 Solutions
 Hardware: cache coherence mechanisms
 Software: compiler assisted cache coherence

3

Example: Write Once Protocol
 Assumption: shared bus interconnect where

all cache controllers monitor all bus activity
 Called snooping

 There is only one operation through bus at a
time; cache controllers can be built to take
corrective action and enforce coherence in
caches
 Corrective action could involve updating or

invalidating a cache block

4

X: 0
X: 1

X: 0

Read X Read X

X: 0

Write X=1

X: 1

Read X:
Cache Miss

P1 P2
Example: Write Once Protocol.

5

Snoopy Cache Coherence and Locks

6

Lock Implementation
while (Test&Set (L));
• With snoopy invalidate cache coherence protocol,

spinning on Test&Set leads to lock pingponging
• High bus utilization slows down memory accesses

repeat
while (L);

until (! Test&Set (L));
• Reads of L will be cache hits – no bus traffic
• When lock is available, many spinners may find that

L=0. First one to get Test&Set on bus wins and
causes invalidation of other cache copies

7

Lock Implementation …
 But, many processes finding L=0 will all try and do

Test&Set(L) causing a burst of bus traffic
 Could try and prevent all of these processes from

attempting Test&Set at about the same time

repeat
while (L);
wait (different time for each process);

until (! Test&Set (L));

8

PARALLEL PROGRAMMING
 Recall: Flynn’s SIMD, MIMD

 How would you describe a program meant to run on
each of these parallel computer classes?
 SIMD: Single Program Multiple Data (SPMD)
 MIMD: Multiple Program Multiple Data (MPMD)

 The programs could involve cooperating activities
using either
 Shared memory: threads with shared variables
 Message passing: communication using messages

 Speedup =
parallel

sequential

T
T

9

Assume that program is parallelized so that the
remaining part (1 - s) is perfectly divided to run in
parallel across n processors

How Much Speedup is Possible?

n
ss 1

1
n

lim

Let s be the fraction of sequential execution time of a
given program that can not be parallelized

Speedup =
s
1

i.e., the maximum speedup achievable is limited by the
sequential fraction of the sequential program

Amdahl’s Law

10

Programming with Message Passing
 Need

1. Mechanism to create processes to execute on
different processors

2. Mechanism to send/receive message
 Must specify the identity of the

communicating process
 Example

P1: send(&x, P2) P2: receive(&y, P1)
 Message passing libraries
 PVM (1980s)
 MPI (1990s)

11

MPI References
1. Using MPI

Gropp, Lusk, Skjellum
www.mcs.anl.gov/mpi/usingmpi

2. MPI: The Complete Reference
Snir, Otto, Huss-Lederman, Walker, Dongarra
www.netlib.org/utk/papers/mpi-book/mpi-book.html

12

Message Passing Interface (MPI)
Standard API
 Hides software/hardware details
 Portable, flexible

Implemented as a library

Your program

MPI Library

Custom
software

Standard
TCP/IP

Standard
network HW

Custom
hardware

13

Key MPI Functions and Constants
 MPI_Init (int *argc, char ***argv)
 MPI_Finalize (void)
 MPI_Comm_rank (MPI_COMM comm, int *rank)
 MPI_Comm_size (MPI_COMM comm, int *size)
 MPI_Send (void *buf, int count, MPI_Datatype

datatype, int dest, int tag, MPI_Comm comm)
 MPI_Recv (void *buf, int count, MPI_Datatype

datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

 MPI_CHAR, MPI_INT, MPI_LONG, MPI_BYTE
 MPI_ANY_SOURCE, MPI_ANY_TAG

