
High Performance Computing
Lecture 41

Matthew Jacob

Indian Institute of Science

2

Example: MPI Pi Calculating Program
/Each process initializes, determines the communicator

size and its own rank
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM_WORLD, &myid);

/The master process (P0) takes input from the user
if (myid == 0){

printf(“Enter the number of intervals”);
scanf(“%d”, &n);

}
/The master process broadcasts the value of n
MPI_Bcast (&n,1,MPI_INT,0, MPI_COMM_WORLD);

3

Example: MPI Pi Calculating Program
if (n == 0) {/* master process */}
else { /* each slave process does some work */

h = 1.0 / (double) n;
sum = 0.0;
for (i = myid+1; i <= n; i += numprocs) {

x = h * ((double) i - 0.5);
sum += (4.0 / (1.0 + x*x));

}
mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1,MPI_DOUBLE, MPI_SUM,
0, MPI_COMM_WORLD);

}
MPI_Finalize();

4

Parallelizing a Program
Given a sequential program/algorithm, how to

go about producing a parallel version
Four steps in program parallelization

1. Decomposition
Identifying parallel tasks with large extent of possible

parallel activity
2. Assignment

Grouping the tasks into processes with best load
balancing

3. Orchestration
Reducing synchronization and communication costs

4. Mapping
Mapping of processes to processors

5

Example 1: Barrier Implementation
 What is a barrier?
 A process synchronization primitive
 If n cooperating processes all include a call to the

barrier primitive …
 Each entering process gets blocked on the barrier

call until all the n processes have reached the
barrier call

 Thus, the n processes are synchronized on
departure from the barrier call

6

Example 1: Barrier Implementation
P0 P1

Pn-1

Barrier();

Barrier();
Barrier();

int Counter; Increment counter and wait
until the value becomes n

7

Linear Barrier Pseudocode

P0

P2 P3 P4 P5 P6 P7P1

When a process reaches the
barrier call, it sends a
message to the master
process

8

Linear Barrier Pseudocode

P0

P2 P3 P4 P5 P6 P7P1

When the master process has
received n messages, it
sends a message to each of
the participating processes to
go ahead

9

Linear Barrier Pseudocode
Master:

for (i = 0; i < n; i++) /receive messages from slaves/
receive (Pany);

for (i = 0; i < n; i++) /release slaves/
send (Pi);

Slaves:
send (Pmaster);
receive (Pmaster)

Master does n receives
and then n sends

10

Alternatively …
P0 P2 P3 P4 P5 P6 P7P1

Master does 3
receives and
then 3 sends

Tree Barrier

11

Alternatively …
P0 P2 P3 P4 P5 P6 P7P1

Butterfly Barrier

Each process
does 3 send-
receives

Stage 1: P0-P1, P2-P3, P4-P5, P6-P7

Stage 2: P0-P2, P1-P3, P4-P6, P5-P7

Stage 3: P0-P4, P1-P5, P2-P6, P3-P7

12

Example 2
Given a 2-d array of float values, repeatedly

average each elements with its immediate
neighbours until the difference between two
iterations is less than some tolerance value
diff = 0.0
for (i=0; i < n; i++)

for (j=0; j < n, j++){
temp = A[i] [j];
A[i][j] = average (neighbours);
diff += abs (A[i][j] – temp);

}
if (diff < tolerance) done;

A[i][j-1] A[i][j] A[i][j+1]

A[i+1][j]

A[i-1][j]

13

Some Decomposition Options
1. A parallel task for each element update

14

Option 1

15

Some Decomposition Options.
1. A parallel task for each element update
 Maximum parallelism: n2

 Synchronization required: wait for left & top values
 High synchronization cost

16

Some Decomposition Options..
1. A parallel task for each element update
 Maximum parallelism: n2

 Synchronization required: wait for left & top values
 High synchronization cost

2. A parallel task for each anti-diagonal

17

Option 2 Anti-diagonals

18

Some Decomposition Options…

2. A parallel task for each anti-diagonal
 No dependence among elements in task
 Maximum parallelism: 2n-1
 Synchronization: must wait for previous anti-

diagonal values; less cost than for the previous
scheme

3. A parallel task for each block of rows

1. A parallel task for each element update
 Maximum parallelism: n2

 Synchronization required: wait for left & top values
 High synchronization cost

19

Blocks of rowsOption 3

20

High Performance Computing
1. Program execution: Compilation, Object files, Function call

and return, Address space, Data & its representation (4)
2. Computer organization: Memory, Registers, Instruction set

architecture, Instruction processing (6)
3. Virtual memory: Address translation, Paging (4)
4. Operating system: Processes, System calls,

Process management (6)
5. Pipelined processors: Structural, data and control hazards,

impact on programming (4)
6. Cache memory: Organization, impact on programming (5)
7. Program profiling (2)
8. File systems: Disk management, Name management,

Protection (4)
9. Parallel programming: Inter-process communication,

Synchronization, Mutual exclusion, Parallel architecture,
Programming with message passing using MPI (5)

