Numerical Optimization

Mathematical Background (I)

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Sets

Definition

A set is a collection of objects satisfying certain property P.

Examples:

- A set of natural numbers, $\{1, 2, 3, \ldots\}$
- $\{x \in \mathbb{R} : 1 \le x \le 3\}$

Note: A set not containing any object is called the *empty* set and is denoted by ϕ .

Let A and B be two sets.

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$

Union:
$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$

If the intersection of two sets is empty, we say that the sets are *disjoint*. That is, for two disjoint sets *A* and *B*, $A \cap B = \phi$.

Difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$

Let *A* and *B* be two sets. If *A* is a subset of *B*, that is, every member of *A* is also a member of *B*, we write $A \subseteq B$. Further, if *A* is a subset of *B* and there exists $y \in B$ such that $y \notin A$, then we write $A \subset B$.

Supremum and Infimum of a set

Definition

A set *A* of real numbers is said to be *bounded above*, if there is a real number *y* such that $x \le y$ for every $x \in A$. The smallest possible real number *y* satisfying $x \le y$ for every $x \in A$ is called the *least upper bound* or *supremum* of *A* and is denoted by $\sup\{x : x \in A\}$.

Similarly, one can define *greatest lower bound* or *infimum*, inf{x : x ∈ A}.

Example: Consider the set, $A = \{x : 1 \le x < 3\}$

•
$$\sup\{x: x \in A\} = 3 \notin A$$

•
$$\inf\{x : x \in A\} = 1 (\in A)$$

Vector Space

A nonempty set S is called a vector space if

• For any $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} + \mathbf{y}$ is defined and is in S. Further,

$$\begin{aligned} \mathbf{x} + \mathbf{y} &= \mathbf{y} + \mathbf{x} \quad \text{(commutativity)} \\ \mathbf{x} + (\mathbf{y} + \mathbf{z}) &= (\mathbf{x} + \mathbf{y}) + \mathbf{z} \quad \text{(associativity)} \end{aligned}$$

- There exists an element in S, 0, such that x + 0 = 0 + x = x for all x.
- So For any $\mathbf{x} \in S$, there exists $\mathbf{y} \in S$ such that $\mathbf{x} + \mathbf{y} = \mathbf{0}$.
- For any x ∈ S and α ∈ ℝ, αx is defined and is in S. Further, 1x = x for every x.
- **(a)** For any $\mathbf{x}, \mathbf{y} \in S$ and $\alpha, \beta \in \mathbb{R}$,

$$\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}$$
$$(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$$
$$\alpha(\beta \mathbf{x}) = (\alpha\beta)\mathbf{x}$$

Elements in *S* are called *vectors*

,

Notations

- \mathbb{R} : Vector space of real numbers
- \mathbb{R}^n : Vector space of real $n \times 1$ vectors
- *n*-vector **x** is an array of *n* scalars, x_1, x_2, \ldots, x_n

•
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

• $\mathbf{x} \in \mathbb{R}^n, x_i \in \mathbb{R} \ \forall \ i$
• $\mathbf{x}^T = (x_1, x_2, \dots, x_n)$
• $\mathbf{0}^T = (0, 0, \dots, 0)$
• $\mathbf{1}^T = (1, 1, \dots, 1)$ (We also use **e** to denote this vector)

Definition

If *S* and *T* are vector spaces such that $S \subseteq T$, then *S* is called a *subspace* of *T*.

Question: What are all possible subspaces of \mathbb{R}^2 ?

Spanning Set

Definition

A set of vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ is said to *span* the vector space *S* if any vector $\mathbf{x} \in S$ can be represented as

$$\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i$$

for some real coefficients α_i , $i = 1, \ldots, k$.

Example : The vectors, $a1 = (1,0)^T, a2 = (1,1)^T; a3 = (0,1)^T, a4 = (-1,0)^T$ and $a5 = (1,-1)^T$ span \mathbb{R}^2

Linear Independence

Definition

A set of vectors $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ is said to *linearly independent* if

$$\sum_{i=1}^k \alpha_i \mathbf{x}_i = 0 \Rightarrow \alpha_i = 0 \ \forall i.$$

Otherwise, they are linearly dependent and one of them is a linear combination of the others.

Example : In ℝ²,
a1 = (1,0) and a2 = (1,1) are linearly independent.
a1 = (1,0) and a4 = (-1,0) are linearly dependent.

Basis

Definition

A set of vectors is said to be a *basis* for the vector space *S* if it is linearly independent and spans *S*.

Example : For ℝ², *a*1 = (1,0) and *a*2 = (1,1) form a basis *a*1 = (1,0) and *a*3 = (0,1) form a basis

- A vector space does not have a unique basis.
- If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ is a basis for *S*, then any $\mathbf{x} \in S$ can be *uniquely* represented using $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$.
- Any two bases of a vector space have the same cardinality.
- The dimension of the vector space *S* is the cardinality of a basis of *S*.
- The dimension of the vector space \mathbb{R}^n is *n*.
- Let \mathbf{e}_i denote an *n*-dimensional vector whose *i*-th element is 1 and the remaining elements are 0's. Then, the set $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ forms a *standard* basis for \mathbb{R}^n .
- A basis for the vector space *S* is a maximal independent set of vectors which spans the space *S*.
- A basis for the vector space *S* is a minimal spanning set of vectors which spans the space *S*.

Functions

Definition

A function f from a set A to a set B is a rule that assigns to each x in A a unique element f(x) in B. This function can be represented by

$$f: A \rightarrow B.$$

Note:

- A: Domain of f
- $\{y \in B : (\exists x)[y = f(x)]\}$: Range of f
- Range of $f \subseteq B$

Examples:

Definition

A *norm* on \mathbb{R}^n is a real-valued function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ which obeys

• $\|\mathbf{x}\| \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$, and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$,

•
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for every $\mathbf{x} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, and

• $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for every $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$.

Let $\mathbf{x} \in \mathbb{R}^n$. Some popular norms:

• L₂ or Euclidean norm

$$\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n (x_i)^2\right)^{\frac{1}{2}}$$

• L_1 norm

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$$

• L_{∞} norm

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Illustration of L_2 norm:

$$\|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{n} (x_{i})^{2}\right)^{\frac{1}{2}}$$

In general, the class of L_p (1 ≤ p < ∞) vector norms is defined as

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

• *Question*: Does the convergence of a particular optimization algorithm depend on what norm its stopping criterion used?

Result

If $\|\cdot\|_p$ and $\|\cdot\|_q$ are any two norms on \mathbb{R}^n , then there exist positive constants α and β such that

$$\alpha \|\mathbf{x}\|_p \le \|\mathbf{x}\|_q \le \beta \|\mathbf{x}\|_p$$

for any $\mathbf{x} \in \mathbb{R}^n$.

Inner Product

Definition

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\mathbf{x} \neq 0 \neq \mathbf{y}$. The *inner* or *dot* product of \mathbf{x} and \mathbf{y} is defined as

$$\mathbf{x} \cdot \mathbf{y} \equiv \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i \cdot y_i = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cos \theta$$

where θ is the angle between **x** and **y**.

Note:

Orthogonality

• Suppose x and y are perpendicular to each other.

Using Pythagoras formula,

$$\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \|\mathbf{x} - \mathbf{y}\|^2$$

which gives $\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\mathbf{x}^T \mathbf{y}$. That is, $\mathbf{x}^T \mathbf{y} = \mathbf{0}$

Orthogonality

Definition

Let $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$. \mathbf{x} and \mathbf{y} are said to *perpendicular* or *orthogonal* to each other if $\mathbf{x}^T \mathbf{y} = 0$.

Definition

Two subspaces S and T of the same vector space ℝⁿ are orthogonal if every vector x ∈ S is orthogonal to every vector y ∈ T, i.e. x^Ty = 0 ∀x ∈ S, y ∈ T.

Definition

Given a subspace *S* of \mathbb{R}^n , the space of all vectors orthogonal to *S* is called the *orthogonal complement* of *S*.

Mutual Orthogonality

Definition

Vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$ are said to be *mutually orthogonal* if $\mathbf{x}_i \cdot \mathbf{x}_j = 0$ for all $i \neq j$. If, in addition, $\|\mathbf{x}_i\| = 1$ for every *i*, the set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ is said to be *orthonormal*.

Mutual Orthogonality

• Is the set of mutually orthogonal vectors linearly independent?

Result

If $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ are mutually orthogonal nonzero vectors, then they are linearly independent.

We need to show that

$$\sum_{i=1}^k \alpha_i \mathbf{x}_i = 0 \Rightarrow \alpha_i = 0 \ \forall i.$$

Proof.

Let $\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_k \mathbf{x}_k = 0$. Therefore, $(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_k \mathbf{x}_k)^T \mathbf{x}_1 = 0$, or, $\sum_{i=1}^k \alpha_i \mathbf{x}_i^T \mathbf{x}_1 = 0$. This gives $\alpha_1 \mathbf{x}_1^T \mathbf{x}_1 = 0$ which implies $\alpha_1 = 0$. Similarly we can show that each α_i is zero. Therefore, the mutually orthogonal vectors are linearly independent.

Suppose x_1 and x_2 are orthonormal.

Given any vector \mathbf{x} , we can write $\mathbf{x} = (\mathbf{x}^T \mathbf{x}_1)\mathbf{x}_1 + (\mathbf{x}^T \mathbf{x}_2)\mathbf{x}_2$.

We require orthonormality of given set of vectors.

Question: How to produce an orthonormal basis starting with a given basis $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$?

Gram-Schmidt Procedure

- Given $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, a basis in \mathbb{R}^3
- To produce an orthonormal basis **y**₁, **y**₂, **y**₃.
- Without loss of generality, set $\mathbf{y}_1 = \frac{\mathbf{x}_1}{\|\mathbf{x}_1\|}$
- Consider \mathbf{x}_2 and remove its component in the \mathbf{y}_1 direction.

$$\mathbf{z}_2 = \mathbf{x}_2 - (\mathbf{x}_2^T \mathbf{y}_1) \mathbf{y}_1$$

- **z**₂ is orthogonal to **y**₁
- Set $\mathbf{y}_2 = \frac{\mathbf{z}_2}{\|\mathbf{z}_2\|}$
- Start with **x**₃ and remove its components in the **y**₁ and **y**₂ directions.

$$\mathbf{z}_3 = \mathbf{x}_3 - (\mathbf{x}_3^T \mathbf{y}_1) \mathbf{y}_1 - (\mathbf{x}_3^T \mathbf{y}_2) \mathbf{y}_2$$

- **z**₃ is orthogonal to **y**₁ and **y**₂
- Set $\mathbf{y}_3 = \frac{\mathbf{z}_3}{\|\mathbf{z}_3\|}$
- Easy to extend this procedure to a basis in \mathbb{R}^n

Matrices

• $\mathbf{A} \in \mathbb{R}^{m \times n}$. A is a matrix of size $m \times n$.

$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix}$$

- A_{ij} denotes (i, j)-element of **A**.
- $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$ where $\mathbf{a}_i \in \mathbb{R}^m, i = 1, \dots, n$
- The *transpose* of **A**, denoted by \mathbf{A}^T is the $n \times m$ matrix whose (i, j)-element is A_{ji} .

•
$$\mathbf{A}^T = \begin{pmatrix} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_n^T \end{pmatrix}$$

Matrices

• Diagonal Matrix: A square matrix Λ such that $\Lambda_{ij} = 0, i \neq j$

$$\Lambda = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

• Identity Matrix (I): A diagonal matrix such that $I_{ii} = 1 \forall i$

$$\mathbf{I} = \left(\begin{array}{ccccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{array}\right)$$

• Lower Triangular Matrix (L) : A square matrix such that $L_{ij} = 0, i < j$

Matrices

• Let $\mathbf{A} \in \mathbb{R}^{m \times n}$

Definition

The subspace of \mathbb{R}^{m} , spanned by the column vectors of **A** is called the *column space* of **A**. The subspace of \mathbb{R}^{n} , spanned by the row vectors of **A** is called the *row space* of **A**

Definition

Column Rank : The dimension of the column space *Row Rank* : The dimension of the row space

Definition

The column rank of a matrix A equals its row rank, and this common value is called the *rank* of A.

• Let
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -2 & 4 \\ -1 & -3 & 1 & -2 \end{pmatrix}$$
. rank $(\mathbf{A}) = 2$

- The rank of a matrix is 0 if and only of it is a zero matrix.
- Matrices with the smallest rank Rank one matrices *Example*:

$$\begin{pmatrix} 3 & 1 & -1 \\ -3 & -1 & 1 \\ 6 & 2 & -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \begin{pmatrix} 3 & 1 & -1 \end{pmatrix} = \mathbf{u}\mathbf{v}^T$$

• Every matrix of rank one has the simplest form, $\mathbf{A} = \mathbf{u}\mathbf{v}^T$.

Matrices

Definition

۲

A square matrix **A** is said to be *invertible* if there exists a matrix **B** such that AB = BA = I. There is at most one such **B** and is denoted by A^{-1} .

Easy to verify that,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \text{ if } (ad - bc) \neq 0.$$

$$\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}^{-1} = \begin{pmatrix} 1/\lambda_1 & 0 \\ 0 & 1/\lambda_2 \end{pmatrix} \text{ if } \lambda_1, \lambda_2 \neq 0.$$

Matrices

A product of invertible matrices is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

• We denote the determinant of a matrix **A** by det(**A**).

If $det(\mathbf{A}) \neq 0$, then **A** is invertible.

• The matrix
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is invertible if

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq$$
i.e. $ad - bc \neq$

• The matrix \mathbf{Q} is orthogonal if $\mathbf{Q}^{-1} = \mathbf{Q}^T$.

0

0

Matrix-vector multiplication, Ax

•
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
• $\mathbf{A}\mathbf{x} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$

Matrix-vector multiplication, Ax

•
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$$
 and $\mathbf{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
• $\mathbf{A}\mathbf{x} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} = 4 \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 4\mathbf{x}$

Shirish Shevade Numerical Optimization

Eigenvalues and Eigenvectors

Definition

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The *eigenvalues* and *eigenvectors* of \mathbf{A} are the real or complex scalars λ and *n*-dimensional vectors \mathbf{x} such that

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}, \ \mathbf{x} \neq \mathbf{0}.$

•
$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \Rightarrow (\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = 0$$

• λ is an eigenvalue of **A** if and only if

 $det(\mathbf{A} - \lambda \mathbf{I}) = 0 \qquad (characteristic equation of \mathbf{A})$

• This equation has *n* roots and are called the eigenvalues of **A**.

Eigenvalues and Eigenvectors

• Let
$$\mathbf{A} = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}$$
.

• Characteristic equation:

$$det \begin{pmatrix} 4 - \lambda & -5 \\ 2 & -3 - \lambda \end{pmatrix} = 0$$
$$\Rightarrow (\lambda^2 - \lambda - 2) = 0$$
$$\Rightarrow \lambda = 2 \text{ or } \lambda = -1$$

• $\lambda_1 = 2, (\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{x}_1 = \mathbf{0}$ gives \mathbf{x}_1 to be a multiple of $(5, 2)^T$.

- $\lambda_2 = -1, (\mathbf{A} \lambda_2 \mathbf{I}) \mathbf{x}_2 = \mathbf{0}$ gives \mathbf{x}_2 to be a multiple of $(1, 1)^T$.
- Eigenvalues of \mathbf{A} : 2 and -1
- The corresponding eigenvectors of $\mathbf{A} : (5,2)^T$ and $(1,1)^T$

Symmetric Matrices

Definition

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The matrix \mathbf{A} is said to be *symmetric* if $\mathbf{A}^T = \mathbf{A}$.

• Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric. Then,

- A has *n* real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, and
- a corresponding set of eigenvectors {**x**₁, **x**₂,..., **x**_n} can be chosen to be orthonormal.

•
$$\mathbf{S} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$
 is an orthogonal matrix $(\mathbf{S}^{-1} = \mathbf{S}^T)$.
• $\mathbf{S}^T \mathbf{A} \mathbf{S} = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix} = \Lambda$

Quadratic Form

- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix
- Consider $f(x) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, a pure quadratic form

A is said to be	if
<i>positive definite</i> (pd)	$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for every nonzero $\mathbf{x} \in \mathbb{R}^n$
positive semi-definite (psd)	$\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$
negative definite (nd)	$\mathbf{x}^T \mathbf{A} \mathbf{x} < 0$ for every nonzero $\mathbf{x} \in \mathbb{R}^n$
negative semi-definite (nsd)	$\mathbf{x}^T \mathbf{A} \mathbf{x} \leq 0$ for every $\mathbf{x} \in \mathbb{R}^n$
indefinite	A is neither positive definite
	nor negative definite

• *Question*: How to numerically check the positive definiteness of **A**?

Quadratic Form

- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix
- Consider $f(x) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, a pure quadratic form
- Eigenvalues of $\mathbf{A}: \lambda_1, \lambda_2, \ldots, \lambda_n$
- Orthonormal Eigenvectors of $\mathbf{A} : \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$

•
$$\mathbf{S} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$$

$$\mathbf{x}^{T} \mathbf{A} \mathbf{x} = \mathbf{x}^{T} \mathbf{S} \wedge \mathbf{S}^{T} \mathbf{x}$$
$$= \mathbf{y}^{T} \wedge \mathbf{y}$$
$$= \sum_{i=1}^{n} \lambda_{i} y_{i}^{2}$$

Therefore, $\lambda_i > 0 \quad \forall i \Rightarrow \mathbf{x}^T \mathbf{A} \mathbf{x} > 0$

To prove that $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \Rightarrow$ Every eigen value of **A** is positive.

- Given, $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for every $\mathbf{x} \neq 0$
- Therefore, $\mathbf{x}_i^T \mathbf{A} \mathbf{x}_i > 0$ for every eigen vector \mathbf{x}_i
- That is, $\lambda_i \mathbf{x}_i^T \mathbf{x}_i > 0$ for every eigen vector \mathbf{x}_i
- Thus, $\lambda_i > 0$ for every eigen vector \mathbf{x}_i .

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric. Then,

A is said to be	if and only if, all the eigenvalues of A are
positive definite (pd)	positive
<i>positive semi-definite</i> (psd)	non-negative
negative definite (nd)	negative
<i>negative semi-definite</i> (nsd)	non-positive

• A is indefinite if and only if, it has both positive and negative eigenvalues.

Some other ways of checking positive definiteness Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric.

• Sylvester's criterion: A is positive definite if all its leading principal minors are positive.

$$\begin{pmatrix} a & b & c \\ b & e & f \\ c & f & g \end{pmatrix}, \begin{pmatrix} a & b & c \\ b & e & f \\ c & f & g \end{pmatrix}, \begin{pmatrix} a & b & c \\ b & e & f \\ c & f & g \end{pmatrix}$$

A is positive definite if there exists a unique lower triangular matrix L ∈ ℝ^{n×n} with positive diagonal components such that A = LL^T (Cholesky Decomposition).

Examples

•
$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 is positive definite
(The eigenvalues are $2 - \sqrt{2}, 2 + \sqrt{2}$ and 2).
• $\begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$ is positive semi-definite
• $\begin{pmatrix} 1 & -2 & 4 \\ -2 & 2 & 0 \\ 4 & 0 & -7 \end{pmatrix}$ is indefinite

Solution of Ax = b

- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$, symmetric and positive definite
- Solution of Ax = b is $x^* = A^{-1}b$
- Instead, use Cholesky decomposition of $\mathbf{A}, \mathbf{A} = \mathbf{L}\mathbf{L}^T$
- The given system of equations is $\mathbf{L}\mathbf{L}^T\mathbf{x} = \mathbf{b}$
- Solve the *triangular* system, Ly = b using *forward substitution* to get y.
- Solve the *triangular* $\mathbf{L}^T \mathbf{x} = \mathbf{y}$ using *backward substitution* to get \mathbf{x}^* .
- Cholesky decomposition is a *numerically stable* procedure

Solution of
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

• $\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 0 \\ 4 \\ -4 \end{pmatrix}$
• Cholesky decomposition of $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ gives
 $\mathbf{L} = \begin{pmatrix} 1.4142 & 0 & 0 \\ -0.7071 & 1.2247 & 0 \\ 0 & -0.8165 & 1.1547 \end{pmatrix}$
• Solution of $\mathbf{L}\mathbf{y} = \mathbf{b}$ gives $\mathbf{y} = \begin{pmatrix} 0 \\ 3.2660 \\ -1.1547 \end{pmatrix}$
• Solution of $\mathbf{L}^T \mathbf{x} = \mathbf{y}$ results in

$$\mathbf{x}^* = \begin{pmatrix} 1\\ 2\\ -1 \end{pmatrix}$$

- Strang G., Linear Algebra and Its Applications, Thomson-Brooks/Cole (2006).
- Golub G. H. and Van Loan C. F., Matrix Computations, The Johns Hopkins University Press (1996), Hindustan Book Agency (India) (2007).