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Sets

Definition
A set is a collection of objects satisfying certain property P.

Examples:

A set of natural numbers, {1, 2, 3, . . .}
{x ∈ R : 1 ≤ x ≤ 3}

Note: A set not containing any object is called the empty set and is
denoted by φ.

Let A and B be two sets.

Union: A ∪ B = {x : x ∈ A or x ∈ B}
Intersection: A ∩ B = {x : x ∈ A and x ∈ B}
Difference: A\B = {x : x ∈ A and x /∈ B}
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Union: A ∪ B = {x : x ∈ A or x ∈ B}
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Intersection: A ∩ B = {x : x ∈ A and x ∈ B}

If the intersection of two sets is empty, we say that the sets are
disjoint. That is, for two disjoint sets A and B, A ∩ B = φ.
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Difference: A\B = {x : x ∈ A and x /∈ B}
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Let A and B be two sets. If A is a subset of B, that is, every member of
A is also a member of B, we write A ⊆ B. Further, if A is a subset of B
and there exists y ∈ B such that y /∈ A, then we write A ⊂ B.
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Supremum and Infimum of a set

Definition
A set A of real numbers is said to be bounded above, if there is a real
number y such that x ≤ y for every x ∈ A. The smallest possible real
number y satisfying x ≤ y for every x ∈ A is called the least upper
bound or supremum of A and is denoted by sup{x : x ∈ A}.

Similarly, one can define greatest lower bound or infimum,
inf{x : x ∈ A}.

Example: Consider the set, A = {x : 1 ≤ x < 3}
sup{x : x ∈ A} = 3(/∈ A)

inf{x : x ∈ A} = 1(∈ A)

Shirish Shevade Numerical Optimization



Mathematical Background

Vector Space
A nonempty set S is called a vector space if

1 For any x, y ∈ S, x + y is defined and is in S. Further,

x + y = y + x (commutativity)

x + (y + z) = (x + y) + z (associativity)

2 There exists an element in S, 0, such that x + 0 = 0 + x = x for
all x.

3 For any x ∈ S, there exists y ∈ S such that x + y = 0.
4 For any x ∈ S and α ∈ R, αx is defined and is in S. Further,

1x = x for every x.
5 For any x, y ∈ S and α, β ∈ R,

α(x + y) = αx + αy
(α + β)x = αx + βx

α(βx) = (αβ)x

Elements in S are called vectors
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Notations

R : Vector space of real numbers

Rn : Vector space of real n× 1 vectors

n-vector x is an array of n scalars, x1, x2, . . . , xn

x =


x1
x2
...

xn


x ∈ Rn, xi ∈ R ∀ i

xT = (x1, x2, . . . , xn)

0T = (0, 0, . . . , 0)

1T = (1, 1, . . . , 1) ( We also use e to denote this vector)
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Definition
If S and T are vector spaces such that S ⊆ T , then S is called a
subspace of T .

Question: What are all possible subspaces of R2?
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Spanning Set

Definition
A set of vectors x1, x2, . . . , xk is said to span the vector space S if any
vector x ∈ S can be represented as

x =
k∑

i=1

αixi

for some real coefficients αi, i = 1, . . . , k.
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Example : The vectors,
a1 = (1, 0)T , a2 = (1, 1)T ; a3 = (0, 1)T , a4 = (−1, 0)T and
a5 = (1,−1)T span R2
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Linear Independence

Definition
A set of vectors x1, x2, . . . , xk is said to linearly independent if

k∑
i=1

αixi = 0 ⇒ αi = 0 ∀ i.

Otherwise, they are linearly dependent and one of them is a linear
combination of the others.
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Example : In R2,
a1 = (1, 0) and a2 = (1, 1) are linearly independent.
a1 = (1, 0) and a4 = (−1, 0) are linearly dependent.
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Basis

Definition
A set of vectors is said to be a basis for the vector space S if it is
linearly independent and spans S.
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Example : For R2,
a1 = (1, 0) and a2 = (1, 1) form a basis
a1 = (1, 0) and a3 = (0, 1) form a basis
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A vector space does not have a unique basis.

If x1, x2, . . . , xk is a basis for S, then any x ∈ S can be uniquely
represented using x1, x2, . . . , xk.

Any two bases of a vector space have the same cardinality.

The dimension of the vector space S is the cardinality of a basis
of S.

The dimension of the vector space Rn is n.

Let ei denote an n-dimensional vector whose i-th element is 1
and the remaining elements are 0’s. Then, the set e1, e2, . . . , en

forms a standard basis for Rn.

A basis for the vector space S is a maximal independent set of
vectors which spans the space S.

A basis for the vector space S is a minimal spanning set of
vectors which spans the space S.
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Functions

Definition
A function f from a set A to a set B is a rule that assigns to each x in A
a unique element f (x) in B. This function can be represented by

f : A → B.

Note:

A: Domain of f

{y ∈ B : (∃x)[y = f (x)]}: Range of f

Range of f ⊆ B

Examples:

f : R → R defined as f (x) = x2

f : (−1, 1) → R defined as f (x) = 1
|x|−1
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Definition
A norm on Rn is a real-valued function ‖ · ‖ : Rn → R which obeys

‖x‖ ≥ 0 for every x ∈ Rn, and ‖x‖ = 0 if and only if x = 0,

‖αx‖ = |α|‖x‖ for every x ∈ Rn and α ∈ R, and

‖x + y‖ ≤ ‖x‖+ ‖y‖ for every x ∈ Rn and y ∈ Rn.
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Let x ∈ Rn.
Some popular norms:

L2 or Euclidean norm

‖x‖2 =

(
n∑

i=1

(xi)
2

) 1
2

L1 norm

‖x‖1 =
n∑

i=1

|xi|

L∞ norm

‖x‖∞ = max
i=1,...,n

|xi|
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Illustration of L2 norm:

‖x‖2 =
(∑n

i=1 (xi)
2
) 1

2
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S = {x ∈ R2 : ‖x‖2 ≤ r}
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S = {x ∈ R2 : ‖x‖1 ≤ 1}
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S = {x ∈ R2 : ‖x‖∞ ≤ 1}
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In general, the class of Lp (1 ≤ p < ∞) vector norms is defined
as

‖x‖p =

(
n∑

i=1

|xi|p
) 1

p

Question: Does the convergence of a particular optimization
algorithm depend on what norm its stopping criterion used?

Result
If ‖ · ‖p and ‖ · ‖q are any two norms on Rn, then there exist positive
constants α and β such that

α‖x‖p ≤ ‖x‖q ≤ β‖x‖p

for any x ∈ Rn.
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Inner Product

Definition
Let x, y ∈ Rn and x 6= 0 6= y . The inner or dot product of x and y is
defined as

x · y ≡ xTy =
n∑

i=1

xi · yi = ‖x‖ · ‖y‖ cos θ

where θ is the angle between x and y.

Note:

xTx = ‖x‖2.

xTy = yTx
|x · y| ≤ ‖x‖ · ‖y‖ (Cauchy-Schwartz inequality)
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Orthogonality
Suppose x and y are perpendicular to each other.

Using Pythagoras formula,

‖x‖2 + ‖y‖2 = ‖x− y‖2,

which gives ‖x‖2 + ‖y‖2 = ‖x‖2 + ‖y‖2 − 2xTy. That is, xTy = 0
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Orthogonality

Definition
Let x ∈ Rn and y ∈ Rn. x and y are said to perpendicular or
orthogonal to each other if xTy = 0.

Definition
Two subspaces S and T of the same vector space Rn are
orthogonal if every vector x ∈ S is orthogonal to every vector
y ∈ T , i.e. xTy = 0 ∀x ∈ S, y ∈ T .
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Definition
Given a subspace S of Rn, the space of all vectors orthogonal to S is
called the orthogonal complement of S.
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Mutual Orthogonality

Definition
Vectors x1, x2, . . . , xk ∈ Rn are said to be mutually orthogonal if
xi · xj = 0 for all i 6= j. If, in addition, ‖xi‖ = 1 for every i, the set
{x1, x2, . . . , xk} is said to be orthonormal.
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Mutual Orthogonality

Is the set of mutually orthogonal vectors linearly independent?
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Result
If x1, x2, . . . , xk are mutually orthogonal nonzero vectors, then they
are linearly independent.

We need to show that
k∑

i=1

αixi = 0 ⇒ αi = 0 ∀ i.

Proof.
Let α1x1 + α2x2 + . . . + αkxk = 0.
Therefore, (α1x1 + α2x2 + . . . + αkxk)

Tx1 = 0, or,∑k
i=1 αixT

i x1 = 0.
This gives α1xT

1 x1 = 0 which implies α1 = 0.
Similarly we can show that each αi is zero.
Therefore, the mutually orthogonal vectors are linearly independent.
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Suppose x1 and x2 are orthonormal.
Given any vector x, we can write x = (xTx1)x1 + (xTx2)x2.
We require orthonormality of given set of vectors.
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Question: How to produce an orthonormal basis starting with a given
basis x1, x2, . . . , xn?
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Gram-Schmidt Procedure

Given x1, x2, x3, a basis in R3

To produce an orthonormal basis y1, y2, y3.
Without loss of generality, set y1 = x1

‖x1‖
Consider x2 and remove its component in the y1 direction.

z2 = x2 − (xT
2 y1)y1

z2 is orthogonal to y1

Set y2 = z2
‖z2‖

Start with x3 and remove its components in the y1 and y2
directions.

z3 = x3 − (xT
3 y1)y1 − (xT

3 y2)y2

z3 is orthogonal to y1 and y2

Set y3 = z3
‖z3‖

Easy to extend this procedure to a basis in Rn
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Matrices

A ∈ Rm×n. A is a matrix of size m× n.

A =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
...

...
Am1 Am2 . . . Amn


Aij denotes (i, j)-element of A.
A = (a1, a2, . . . , an) where ai ∈ Rm, i = 1, . . . , n
The transpose of A, denoted by AT is the n× m matrix whose
(i, j)-element is Aji.

AT =


aT

1
aT

2
...

aT
n


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Matrices

Diagonal Matrix: A square matrix Λ such that Λij = 0, i 6= j

Λ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn


Identity Matrix (I): A diagonal matrix such that Iii = 1 ∀ i

I =


1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1


Lower Triangular Matrix (L) : A square matrix such that
Lij = 0, i < j
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Matrices
Let A ∈ Rm×n

Definition
The subspace of Rm, spanned by the column vectors of A is called the
column space of A. The subspace of Rn, spanned by the row vectors
of A is called the row space of A

Definition
Column Rank : The dimension of the column space
Row Rank : The dimension of the row space

Definition
The column rank of a matrix A equals its row rank, and this common
value is called the rank of A.
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Let A =
( 1 3 −2 4
−1 −3 1 −2

)
. rank(A) = 2

The rank of a matrix is 0 if and only of it is a zero matrix.

Matrices with the smallest rank - Rank one matrices
Example: 3 1 −1

−3 −1 1
6 2 −2

 =

 1
−1
2

(3 1 −1
)

= uvT

Every matrix of rank one has the simplest form, A = uvT .
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Matrices

Definition
A square matrix A is said to be invertible if there exists a matrix B
such that AB = BA = I. There is at most one such B and is denoted
by A−1.

Easy to verify that,

(
a b
c d

)−1

=
1

ad − bc

(
d −b
−c a

)
if (ad − bc) 6= 0.

(
λ1 0
0 λ2

)−1

=

(
1/λ1 0

0 1/λ2

)
if λ1, λ2 6= 0.

Shirish Shevade Numerical Optimization



Mathematical Background

Matrices

A product of invertible matrices is invertible and

(AB)−1 = B−1A−1

We denote the determinant of a matrix A by det(A).

If det(A) 6= 0, then A is invertible.

The matrix
(

a b
c d

)
is invertible if

det
(

a b
c d

)
6= 0

i.e. ad − bc 6= 0

The matrix Q is orthogonal if Q−1 = QT .
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Matrix-vector multiplication, Ax
A =

(
3 2
2 0

)
and x =

(
1
1

)
.

Ax =
(

5
2

)

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

o 

(1,1) 

(5,2) 

x1 

x2 
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Matrix-vector multiplication, Ax
A =

(
3 2
2 0

)
and x =

(
2
1

)
.

Ax =
(

8
4

)
= 4
(

2
1

)
= 4x

−1 0 1 2 3 4 5 6 7 8 9
−1

0

1

2

3

4

5

6

(2,1) 

(8,4) 

o x1 

x2 
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Eigenvalues and Eigenvectors

Definition

Let A ∈ Rn×n. The eigenvalues and eigenvectors of A are the real or
complex scalars λ and n-dimensional vectors x such that

Ax = λx, x 6= 0.

Ax = λx ⇒ (A− λI)x = 0

λ is an eigenvalue of A if and only if

det(A− λI) = 0 (characteristic equation of A)

This equation has n roots and are called the eigenvalues of A.
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Eigenvalues and Eigenvectors

Let A =
( 4 −5

2 −3

)
.

Characteristic equation:

det
(

4− λ −5
2 −3− λ

)
= 0

⇒ (λ2 − λ− 2) = 0

⇒ λ = 2 or λ = −1

λ1 = 2, (A− λ1I)x1 = 0 gives x1 to be a multiple of (5, 2)T .

λ2 = −1, (A− λ2I)x2 = 0 gives x2 to be a multiple of (1, 1)T .

Eigenvalues of A : 2 and − 1

The corresponding eigenvectors of A : (5, 2)T and(1, 1)T

Shirish Shevade Numerical Optimization



Mathematical Background

Symmetric Matrices

Definition

Let A ∈ Rn×n. The matrix A is said to be symmetric if AT = A.

Let A ∈ Rn×n be symmetric. Then,

A has n real eigenvalues λ1, λ2, . . . , λn, and
a corresponding set of eigenvectors {x1, x2, . . . , xn} can be
chosen to be orthonormal.
S = (x1, x2, . . . , xn) is an orthogonal matrix (S−1 = ST ).

STAS =


λ1 0 . . . 0
0 λ2 . . . 0
. . . . . . . . . . . .
0 0 . . . λn

 = Λ
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Quadratic Form

Let A ∈ Rn×n be a symmetric matrix

Consider f (x) = xTAx, a pure quadratic form

A is said to be if
positive definite (pd) xTAx > 0 for every nonzero x ∈ Rn

positive semi-definite (psd) xTAx ≥ 0 for every x ∈ Rn

negative definite (nd) xTAx < 0 for every nonzero x ∈ Rn

negative semi-definite (nsd) xTAx ≤ 0 for every x ∈ Rn

indefinite A is neither positive definite
nor negative definite

Question: How to numerically check the positive definiteness of
A?
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Quadratic Form

Let A ∈ Rn×n be a symmetric matrix

Consider f (x) = xTAx, a pure quadratic form

Eigenvalues of A : λ1, λ2, . . . , λn

Orthonormal Eigenvectors of A : x1, x2, . . . , xn

S = (x1, x2, . . . , xn)

xTAx = xTSΛSTx
= yTΛy

=
n∑

i=1

λiy2
i

Therefore, λi > 0 ∀ i ⇒ xTAx > 0
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To prove that xTAx > 0 ⇒ Every eigen value of A is positive.

Given, xTAx > 0 for every x 6= 0

Therefore, xT
i Axi > 0 for every eigen vector xi

That is, λixT
i xi > 0 for every eigen vector xi

Thus, λi > 0 for every eigen vector xi.
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Let A ∈ Rn×n be symmetric. Then,

A is said to be if and only if, all the eigenvalues of A are
positive definite (pd) positive

positive semi-definite (psd) non-negative
negative definite (nd) negative

negative semi-definite (nsd) non-positive

A is indefinite if and only if, it has both positive and negative
eigenvalues.

Shirish Shevade Numerical Optimization



Mathematical Background

Some other ways of checking positive definiteness
Let A ∈ Rn×n be symmetric.

Sylvester’s criterion: A is positive definite if all its leading
principal minors are positive.a b c

b e f
c f g

 ,

a b c
b e f
c f g

 ,

a b c
b e f
c f g


A is positive definite if there exists a unique lower triangular
matrix L ∈ Rn×n with positive diagonal components such that
A = LLT (Cholesky Decomposition).
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Examples 2 −1 0
−1 2 −1
0 −1 2

 is positive definite

(The eigenvalues are 2−
√

2, 2 +
√

2 and 2). 2 −1 −1
−1 2 −1
−1 −1 2

 is positive semi-definite

 1 −2 4
−2 2 0
4 0 −7

 is indefinite
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Solution of Ax = b

Let A ∈ Rn×n, symmetric and positive definite

Solution of Ax = b is x∗ = A−1b
Instead, use Cholesky decomposition of A, A = LLT

The given system of equations is LLTx = b
Solve the triangular system, Ly = b using forward substitution
to get y.

Solve the triangular LTx = y using backward substitution to get
x∗.
Cholesky decomposition is a numerically stable procedure
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Solution of Ax = b

A =

 2 −1 0
−1 2 −1
0 −1 2

 , b =

 0
4
−4


Cholesky decomposition of A = LLT gives

L =

 1.4142 0 0
−0.7071 1.2247 0

0 −0.8165 1.1547


Solution of Ly = b gives y =

 0
3.2660
−1.1547


Solution of LTx = y results in

x∗ =

 1
2
−1


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