Numerical Optimization

Mathematical Background (I)

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Sets

Definition

A *set* is a collection of objects satisfying certain property *P*.

Examples:

- A set of natural numbers, $\{1, 2, 3, \ldots\}$
- $\bullet \{x \in \mathbb{R} : 1 \leq x \leq 3\}$

Note: A set not containing any object is called the *empty* set and is denoted by ϕ .

Let *A* and *B* be two sets.

- \bullet Union: *A* ∪ *B* = {*x* : *x* ∈ *A* o*r x* ∈ *B*}
- \bullet Intersection: *A* ∩ *B* = {*x* : *x* ∈ *A* and *x* ∈ *B*}
- \bullet Difference: $A \ B = \{x : x \in A \text{ and } x \notin B\}$

$$
Union: A \cup B = \{x : x \in A \text{ or } x \in B\}
$$

Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$

If the intersection of two sets is empty, we say that the sets are *disjoint*. That is, for two disjoint sets *A* and *B*, $A \cap B = \emptyset$.

Difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$

Let *A* and *B* be two sets. If *A* is a subset of *B*, that is, every member of *A* is also a member of *B*, we write $A \subseteq B$. Further, if *A* is a subset of *B* and there exists $y \in B$ such that $y \notin A$, then we write $A \subset B$.

Supremum and Infimum of a set

Definition

A set *A* of real numbers is said to be *bounded above*, if there is a real number *y* such that $x \le y$ for every $x \in A$. The smallest possible real number *y* satisfying $x \leq y$ for every $x \in A$ is called the *least upper bound* or *supremum* of *A* and is denoted by $\sup\{x : x \in A\}$.

Similarly, one can define *greatest lower bound* or *infimum*, inf{*x* : *x* ∈ *A* }.

Example: Consider the set, $A = \{x : 1 \le x \le 3\}$

$$
\bullet \ \ \sup\{x : x \in A\} = 3(\notin A)
$$

$$
\bullet \ \inf\{x : x \in A\} = 1(\in A)
$$

Vector Space

A nonempty set *S* is called a *vector space* if

1 For any $x, y \in S$, $x + y$ is defined and is in *S*. Further,

$$
\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} \quad \text{(commutativity)}
$$
\n
$$
\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z} \quad \text{(associativity)}
$$

- **2** There exists an element in *S*, **0**, such that $x + 0 = 0 + x = x$ for all x.
- **3** For any $x \in S$, there exists $y \in S$ such that $x + y = 0$.
- **4** For any $\mathbf{x} \in S$ and $\alpha \in \mathbb{R}$, $\alpha \mathbf{x}$ is defined and is in *S*. Further, $1x = x$ for every x.
- **5** For any $\mathbf{x}, \mathbf{y} \in S$ and $\alpha, \beta \in \mathbb{R}$,

$$
\alpha(\mathbf{x} + \mathbf{y}) = \alpha \mathbf{x} + \alpha \mathbf{y}
$$

$$
(\alpha + \beta)\mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}
$$

$$
\alpha(\beta \mathbf{x}) = (\alpha \beta)\mathbf{x}
$$

Elements in *S* are called *vectors*

Notations

- $\bullet \mathbb{R}$: Vector space of real numbers
- \mathbb{R}^n : Vector space of real $n \times 1$ vectors
- *n*-vector **x** is an array of *n* scalars, x_1, x_2, \ldots, x_n

$$
\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}
$$

\n
$$
\mathbf{x} \in \mathbb{R}^n, x_i \in \mathbb{R} \forall i
$$

\n
$$
\mathbf{x}^T = (x_1, x_2, ..., x_n)
$$

\n
$$
\mathbf{0}^T = (0, 0, ..., 0)
$$

\n
$$
\mathbf{1}^T = (1, 1, ..., 1) \text{ (We also use } \mathbf{e} \text{ to denote this vector)}
$$

Definition

If *S* and *T* are vector spaces such that $S \subseteq T$, then *S* is called a *subspace* of *T*.

Question: What are all possible subspaces of \mathbb{R}^2 ?

Spanning Set

Definition

A set of vectors x_1, x_2, \ldots, x_k is said to *span* the vector space *S* if any vector $x \in S$ can be represented as

$$
\mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i
$$

for some real coefficients α_i , $i = 1, \ldots, k$.

Example : The vectors, $a1 = (1, 0)^T, a2 = (1, 1)^T; a3 = (0, 1)^T, a4 = (-1, 0)^T$ and $a5 = (1, -1)^T$ span \mathbb{R}^2

Linear Independence

Definition

A set of vectors x_1, x_2, \ldots, x_k is said to *linearly independent* if

$$
\sum_{i=1}^k \alpha_i \mathbf{x}_i = 0 \Rightarrow \alpha_i = 0 \ \forall i.
$$

Otherwise, they are linearly dependent and one of them is a linear combination of the others.

Example : In \mathbb{R}^2 , • $a1 = (1, 0)$ and $a2 = (1, 1)$ are linearly independent. • $a1 = (1, 0)$ and $a4 = (-1, 0)$ are linearly dependent.

Basis

Definition

A set of vectors is said to be a *basis* for the vector space *S* if it is linearly independent and spans *S*.

Example : For \mathbb{R}^2 , • $a1 = (1, 0)$ and $a2 = (1, 1)$ form a basis • $a1 = (1, 0)$ and $a3 = (0, 1)$ form a basis

- A vector space does not have a unique basis.
- If x_1, x_2, \ldots, x_k is a basis for *S*, then any $x \in S$ can be *uniquely* represented using $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$.
- Any two bases of a vector space have the same cardinality.
- The dimension of the vector space *S* is the cardinality of a basis of *S*.
- The dimension of the vector space \mathbb{R}^n is *n*.
- Let e*ⁱ* denote an *n*-dimensional vector whose *i*-th element is 1 and the remaining elements are 0's. Then, the set e_1, e_2, \ldots, e_n forms a *standard* basis for \mathbb{R}^n .
- A basis for the vector space *S* is a maximal independent set of vectors which spans the space *S*.
- A basis for the vector space *S* is a minimal spanning set of vectors which spans the space *S*.

Functions

Definition

A function *f* from a set *A* to a set *B* is a rule that assigns to each *x* in *A* a unique element $f(x)$ in *B*. This function can be represented by

$$
f:A\rightarrow B.
$$

Note:

- *A*: *Domain* of *f*
- $\bullet \{y \in B : (\exists x)[y = f(x)]\}$: *Range* of *f*
- \bullet *Range* of f ⊂ *B*

Examples:

\n- •
$$
f : \mathbb{R} \to \mathbb{R}
$$
 defined as $f(x) = x^2$
\n- • $f : (-1, 1) \to \mathbb{R}$ defined as $f(x) = \frac{1}{|x| - 1}$
\n

Definition

A *norm* on \mathbb{R}^n is a real-valued function $\|\cdot\| : \mathbb{R}^n \to \mathbb{R}$ which obeys

 $\|\mathbf{x}\| \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$, and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$,

•
$$
\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|
$$
 for every $\mathbf{x} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, and

 $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ for every $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$.

Let $\mathbf{x} \in \mathbb{R}^n$. Some popular norms:

• *L*₂ or Euclidean norm

$$
\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n (x_i)^2\right)^{\frac{1}{2}}
$$

 \bullet *L*₁ norm

$$
\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|
$$

L[∞] norm

$$
\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i|
$$

Illustration of L_2 norm:

$$
\|\mathbf{x}\|_2 = \left(\sum_{i=1}^n (x_i)^2\right)^{\frac{1}{2}}
$$

• In general, the class of L_p ($1 \leq p < \infty$) vector norms is defined as

$$
\|\mathbf{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}}
$$

Question: Does the convergence of a particular optimization algorithm depend on what norm its stopping criterion used?

Result

If $\|\cdot\|_p$ and $\|\cdot\|_q$ are any two norms on \mathbb{R}^n , then there exist positive constants α and β such that

$$
\alpha \|\mathbf{x}\|_p \le \|\mathbf{x}\|_q \le \beta \|\mathbf{x}\|_p
$$

for any $\mathbf{x} \in \mathbb{R}^n$.

Inner Product

Definition

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\mathbf{x} \neq 0 \neq \mathbf{y}$. The *inner* or *dot* product of **x** and **y** is defined as

$$
\mathbf{x} \cdot \mathbf{y} \equiv \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i \cdot y_i = \|\mathbf{x}\| \cdot \|\mathbf{y}\| \cos \theta
$$

where θ is the angle between **x** and **y**.

Note:

\n- $$
\mathbf{x}^T \mathbf{x} = ||\mathbf{x}||^2
$$
.
\n- $\mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x}$
\n- $|\mathbf{x} \cdot \mathbf{y}| \le ||\mathbf{x}|| \cdot ||\mathbf{y}||$ (Cauchy-Schwartz inequality)
\n

Orthogonality

• Suppose **x** and **y** are perpendicular to each other.

Using Pythagoras formula,

$$
\|x\|^2 + \|y\|^2 = \|x - y\|^2,
$$

which gives $\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 - 2\mathbf{x}^T\mathbf{y}$. That is, $\mathbf{x}^T\mathbf{y} = 0$

Orthogonality

Definition

Let $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$. **x** and **y** are said to *perpendicular* or *orthogonal* to each other if $\mathbf{x}^T \mathbf{y} = 0$.

Definition

Two subspaces S and T of the same vector space \mathbb{R}^n are orthogonal if every vector $x \in S$ is orthogonal to every vector $y \in T$, i.e. $\mathbf{x}^T \mathbf{y} = 0 \ \forall \mathbf{x} \in S, \mathbf{y} \in T$.

Definition

Given a subspace *S* of \mathbb{R}^n , the space of all vectors orthogonal to *S* is called the *orthogonal complement* of *S*.

Mutual Orthogonality

Definition

Vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k \in \mathbb{R}^n$ are said to be *mutually orthogonal* if $\mathbf{x}_i \cdot \mathbf{x}_j = 0$ for all $i \neq j$. If, in addition, $\|\mathbf{x}_i\| = 1$ for every *i*, the set ${x_1, x_2, \ldots, x_k}$ is said to be *orthonormal*.

Mutual Orthogonality

• Is the set of mutually orthogonal vectors linearly independent?

Result

If x_1, x_2, \ldots, x_k are mutually orthogonal nonzero vectors, then they are linearly independent.

We need to show that

$$
\sum_{i=1}^k \alpha_i \mathbf{x}_i = 0 \Rightarrow \alpha_i = 0 \ \forall i.
$$

Proof.

Let $\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \ldots + \alpha_k\mathbf{x}_k = 0$. Therefore, $(\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2 + \ldots + \alpha_k\mathbf{x}_k)^T\mathbf{x}_1 = 0$, or, $\sum_{i=1}^k \alpha_i \mathbf{x}_i^T \mathbf{x}_1 = 0.$ This gives $\alpha_1 \mathbf{x}_1^T \mathbf{x}_1 = 0$ which implies $\alpha_1 = 0$. Similarly we can show that each α_i is zero. Therefore, the mutually orthogonal vectors are linearly independent.

Suppose x_1 and x_2 are orthonormal.

Given any vector **x**, we can write $\mathbf{x} = (\mathbf{x}^T \mathbf{x}_1) \mathbf{x}_1 + (\mathbf{x}^T \mathbf{x}_2) \mathbf{x}_2$.

We require orthonormality of given set of vectors.

Question: How to produce an orthonormal basis starting with a given basis $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$?

Gram-Schmidt Procedure

- Given $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$, a basis in \mathbb{R}^3
- To produce an orthonormal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
- Without loss of generality, set $y_1 = \frac{x_1}{\|x_1\|}$ $\|\mathbf{x}_1\|$
- Consider x_2 and remove its component in the y_1 direction.

$$
\mathbf{z}_2 = \mathbf{x}_2 - (\mathbf{x}_2^T \mathbf{y}_1) \mathbf{y}_1
$$

- z_2 is orthogonal to y_1
- Set $y_2 = \frac{z_2}{\|z_2\|}$ $\|\mathbf{z}_2\|$
- Start with x_3 and remove its components in the y_1 and y_2 directions.

$$
\mathbf{z}_3 = \mathbf{x}_3 - (\mathbf{x}_3^T \mathbf{y}_1) \mathbf{y}_1 - (\mathbf{x}_3^T \mathbf{y}_2) \mathbf{y}_2
$$

- \mathbf{z}_3 is orthogonal to \mathbf{y}_1 and \mathbf{y}_2
- Set $y_3 = \frac{z_3}{\|z_3\|}$ $\|z_3\|$
- Easy to extend this procedure to a basis in \mathbb{R}^n

Matrices

 $A \in \mathbb{R}^{m \times n}$. A is a matrix of size $m \times n$.

$$
\mathbf{A} = \left(\begin{array}{cccc} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{array} \right)
$$

- \bullet *A*_{*ij*} denotes (i, j) -element of **A**.
- $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$ where $\mathbf{a}_i \in \mathbb{R}^m$, $i = 1, \dots, n$
- The *transpose* of **A**, denoted by A^T is the $n \times m$ matrix whose (i, j) -element is A_{ii} .

$$
\bullet \ \mathbf{A}^T = \left(\begin{array}{c} \mathbf{a}_1^T \\ \mathbf{a}_2^T \\ \vdots \\ \mathbf{a}_n^T \end{array} \right)
$$

Matrices

• Diagonal Matrix: A square matrix Λ such that $\Lambda_{ii} = 0$, $i \neq j$

$$
\Lambda = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{array}\right)
$$

 \bullet Identity Matrix (I): A diagonal matrix such that $I_{ii} = 1 \forall i$

$$
\mathbf{I} = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{array} \right)
$$

• Lower Triangular Matrix (L) : A square matrix such that $L_{ii} = 0, i < j$

Matrices

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$

Definition

The subspace of \mathbb{R}^m , spanned by the column vectors of **A** is called the *column space* of **A**. The subspace of \mathbb{R}^n , spanned by the row vectors of A is called the *row space* of A

Definition

Column Rank : The dimension of the column space *Row Rank* : The dimension of the row space

Definition

The column rank of a matrix **A** equals its row rank, and this common value is called the *rank* of A.

• Let
$$
A = \begin{pmatrix} 1 & 3 & -2 & 4 \\ -1 & -3 & 1 & -2 \end{pmatrix}
$$
. rank $(A) = 2$

- The rank of a matrix is 0 if and only of it is a zero matrix.
- Matrices with the smallest rank Rank one matrices *Example*:

$$
\begin{pmatrix} 3 & 1 & -1 \ -3 & -1 & 1 \ 6 & 2 & -2 \ \end{pmatrix} = \begin{pmatrix} 1 \ -1 \ 2 \end{pmatrix} (3 \ 1 \ -1) = uv^T
$$

Every matrix of rank one has the simplest form, $\mathbf{A} = \mathbf{u}\mathbf{v}^T$.

Matrices

Definition

 \bullet

A square matrix A is said to be *invertible* if there exists a matrix B such that $AB = BA = I$. There is at most one such B and is denoted by \mathbf{A}^{-1} .

Easy to verify that,

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ if $(ad - bc) \neq 0$. \bullet $\bigg\}^{-1} = \begin{pmatrix} 1/\lambda_1 & 0 \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} \lambda_1 & 0 \end{pmatrix}$) if $\lambda_1, \lambda_2 \neq 0$. $0 \lambda_2$ $0 \frac{1}{\lambda_2}$

Matrices

A product of invertible matrices is invertible and

$$
(AB)^{-1} = B^{-1}A^{-1}
$$

• We denote the determinant of a matrix \bf{A} by det (\bf{A}) .

If det(A) \neq 0, then A is invertible.

• The matrix
$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
 is invertible if
\n
$$
\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq 0
$$
\ni.e. $ad - bc \neq 0$

The matrix **Q** is orthogonal if $Q^{-1} = Q^T$.

 θ

Matrix-vector multiplication, Ax

\n- $$
A = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}
$$
 and $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
\n- $Ax = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$
\n

Matrix-vector multiplication, Ax

\n- $$
A = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}
$$
 and $x = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.
\n- $Ax = \begin{pmatrix} 8 \\ 4 \end{pmatrix} = 4\begin{pmatrix} 2 \\ 1 \end{pmatrix} = 4x$
\n

Eigenvalues and Eigenvectors

Definition

Let $A \in \mathbb{R}^{n \times n}$. The *eigenvalues* and *eigenvectors* of A are the real or complex scalars λ and *n*-dimensional vectors **x** such that

 $Ax = \lambda x, x \neq 0.$

•
$$
Ax = \lambda x \Rightarrow (A - \lambda I)x = 0
$$

 \bullet λ is an eigenvalue of **A** if and only if

 $det(A - \lambda I) = 0$ (characteristic equation of A)

• This equation has *n* roots and are called the eigenvalues of **A**.

Eigenvalues and Eigenvectors

• Let
$$
\mathbf{A} = \begin{pmatrix} 4 & -5 \\ 2 & -3 \end{pmatrix}
$$
.

• Characteristic equation:

$$
\det\begin{pmatrix} 4-\lambda & -5\\ 2 & -3-\lambda \end{pmatrix} = 0
$$

\n
$$
\Rightarrow (\lambda^2 - \lambda - 2) = 0
$$

\n
$$
\Rightarrow \lambda = 2 \text{ or } \lambda = -1
$$

- $\lambda_1 = 2, (\mathbf{A} \lambda_1 \mathbf{I})\mathbf{x}_1 = \mathbf{0}$ gives \mathbf{x}_1 to be a multiple of $(5, 2)^T$.
- $\lambda_2 = -1, (\mathbf{A} \lambda_2 \mathbf{I})\mathbf{x}_2 = \mathbf{0}$ gives \mathbf{x}_2 to be a multiple of $(1, 1)^T$.
- Eigenvalues of $A : 2$ and -1
- The corresponding eigenvectors of $\mathbf{A} : (5,2)^T$ and $(1,1)^T$

Symmetric Matrices

Definition

Let $A \in \mathbb{R}^{n \times n}$. The matrix A is said to be *symmetric* if $A^T = A$.

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then,

- A has *n* real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, and
- a corresponding set of eigenvectors $\{x_1, x_2, \ldots, x_n\}$ can be chosen to be orthonormal.

•
$$
S = (x_1, x_2,..., x_n)
$$
 is an orthogonal matrix $(S^{-1} = S^T)$.
\n• $S^TAS = \begin{pmatrix} \lambda_1 & 0 & ... & 0 \\ 0 & \lambda_2 & ... & 0 \\ ... & ... & ... & ... \\ 0 & 0 & ... & \lambda_n \end{pmatrix} = \Lambda$

Quadratic Form

- Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix
- Consider $f(x) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, a *pure quadratic form*

Question: How to numerically check the positive definiteness of A?

Quadratic Form

- Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix
- Consider $f(x) = \mathbf{x}^T \mathbf{A} \mathbf{x}$, a *pure quadratic form*
- **•** Eigenvalues of \mathbf{A} : $\lambda_1, \lambda_2, \ldots, \lambda_n$
- Orthonormal Eigenvectors of $A : x_1, x_2, \ldots, x_n$

$$
\bullet \ \mathbf{S} = (x_1, x_2, \ldots, x_n)
$$

$$
\mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \mathbf{S} \mathbf{A} \mathbf{S}^T \mathbf{x}
$$

= $\mathbf{y}^T \mathbf{A} \mathbf{y}$
= $\sum_{i=1}^n \lambda_i y_i^2$

Therefore, $\lambda_i > 0 \quad \forall i \Rightarrow \mathbf{x}^T \mathbf{A} \mathbf{x} > 0$

To prove that $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \Rightarrow$ Every eigen value of **A** is positive.

- Given, $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for every $\mathbf{x} \neq 0$
- Therefore, $\mathbf{x}_i^T \mathbf{A} \mathbf{x}_i > 0$ for every eigen vector \mathbf{x}_i
- That is, $\lambda_i \mathbf{x}_i^T \mathbf{x}_i > 0$ for every eigen vector \mathbf{x}_i
- Thus, $\lambda_i > 0$ for every eigen vector \mathbf{x}_i .

Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then,

A is indefinite if and only if, it has both positive and negative eigenvalues.

Some other ways of checking positive definiteness Let $A \in \mathbb{R}^{n \times n}$ be symmetric.

• Sylvester's criterion: A is positive definite if all its leading principal minors are positive.

$$
\begin{pmatrix} a & b & c \\ b & e & f \\ c & f & g \end{pmatrix}, \begin{pmatrix} a & b & c \\ b & e & f \\ c & f & g \end{pmatrix}, \begin{pmatrix} a & b & c \\ b & e & f \\ c & f & g \end{pmatrix}
$$

A is positive definite if there exists a unique lower triangular matrix $L \in \mathbb{R}^{n \times n}$ with positive diagonal components such that $A = LL^T$ (Cholesky Decomposition).

Examples

\n- \n
$$
\begin{pmatrix}\n 2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2\n \end{pmatrix}
$$
\n is positive definite\n (The eigenvalues are $2 - \sqrt{2}, 2 + \sqrt{2}$ and 2).

\n
\n- \n
$$
\begin{pmatrix}\n 2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2\n \end{pmatrix}
$$
\n is positive semi-definite\n (a) $-\frac{1}{2}$

\n
\n- \n
$$
\begin{pmatrix}\n 1 & -2 & 4 \\
-2 & 2 & 0 \\
4 & 0 & -7\n \end{pmatrix}
$$
\n is indefinite\n (a) $-\frac{1}{2}$

\n
\n

Solution of $Ax = b$

- Let $A \in \mathbb{R}^{n \times n}$, symmetric and positive definite
- Solution of $\mathbf{A}\mathbf{x} = \mathbf{b}$ is $\mathbf{x}^* = \mathbf{A}^{-1}\mathbf{b}$
- Instead, use Cholesky decomposition of \mathbf{A} , $\mathbf{A} = \mathbf{L}\mathbf{L}^T$
- The given system of equations is $LL^{T}x = b$
- Solve the *triangular* system, Ly = b using *forward substitution* to get y.
- Solve the *triangular* $L^T x = y$ using *backward substitution* to get \mathbf{x}^* .
- Cholesky decomposition is a *numerically stable* procedure

Solution of
$$
Ax = b
$$

\n• $A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$, $b = \begin{pmatrix} 0 \\ 4 \\ -4 \end{pmatrix}$
\n• Cholesky decomposition of $A = LL^T$ gives
\n $L = \begin{pmatrix} 1.4142 & 0 & 0 \\ -0.7071 & 1.2247 & 0 \\ 0 & -0.8165 & 1.1547 \end{pmatrix}$
\n• Solution of $Ly = b$ gives $y = \begin{pmatrix} 0 \\ 3.2660 \\ -1.1547 \end{pmatrix}$

Solution of $L^T x = y$ results in

$$
\mathbf{x}^* = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}
$$

- Strang G., Linear Algebra and Its Applications, Thomson-Brooks/Cole (2006).
- • Golub G. H. and Van Loan C. F., Matrix Computations, The Johns Hopkins University Press (1996), Hindustan Book Agency (India) (2007).