Numerical Optimization Mathematical Background (II)

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Definition

Let $a, b \in \mathbb{R}$. The *closed interval* [a, b] denotes the set, $\{x \in \mathbb{R} : a \le x \le b\}$. The set $\{x \in \mathbb{R} : a < x < b\}$ represents the *open interval* (a, b).

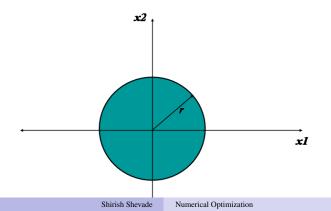
Examples:

- [-3, 2]: a closed interval
- $(1,\infty)$: an open interval

Definition

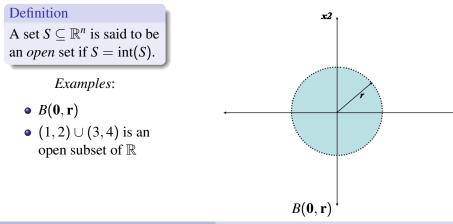
Let $\mathbf{x}_0 \in \mathbb{R}^n$. A *norm ball* of radius r > 0 and centre \mathbf{x}_0 is given by $\{\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x} - \mathbf{x}_0\| \le r\}$ and will be denoted by $B[\mathbf{x}_0, r]$.

Note: We will use $B(\mathbf{x}_0, r)$ to denote $\{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{x}_0|| < r\}$. • $B[\mathbf{0}, \mathbf{r}]$



Definition

Let $x \in S \subseteq \mathbb{R}^n$. *x* is called an *interior point* of *S* if there exists r > 0 such that $B[x, r] \subseteq S$. The set of all such points interior to *S* is called the *interior* of *S* and is denoted by int(*S*).



Definition

A set $S \in \mathbb{R}^n$ is said to be *closed* if its complement in \mathbb{R}^n , $\mathbb{R}^n \setminus S = \{x \in \mathbb{R}^n : x \notin S\}$ is open.

Example: $[1,2] \cup [3,4]$ is a closed subset of \mathbb{R}

Definition

Let $S \subset \mathbb{R}^n$. $\mathbf{x} \in \mathbb{R}^n$ belongs to the *closure* of S, cl(S) if for each $\epsilon > 0, S \cap B[\mathbf{x}, \epsilon] \neq \phi$. The set S is said to be *closed* if S = cl(S).

Example: Let $S = (1, 2] \cup [3, 4)$. Then $cl(S) = [1, 2] \cup [3, 4]$ and $int(S) = (1, 2) \cup (3, 4)$. *Remarks*:

- If S is open, then int(S) = S.
- If S is closed, then cl(S) = S.

Definition

The boundary of a set *S* is defined as $bd(S) = cl(S) \setminus int(S)$.

Definition

A set $S \subset \mathbb{R}^n$ is said to be bounded if there exists R ($0 < R < \infty$) and $\mathbf{x} \in \mathbb{R}^n$, such that $S \subset B(\mathbf{x}, R)$.

Examples:

- $(1,2] \cup [3,100)$: a bounded set
- $[0,\infty)$: not a bounded set

Definition

A set *S* in \mathbb{R}^n is said to be *compact* if it is closed and bounded.

Example:

[0, 100] ∪ [1000, 10000]

Sequences

- $S \subseteq \mathbb{R}^n$
- $\{\mathbf{x}^k\}$: A sequence of points belonging to *S*

Definition

A sequence $\{\mathbf{x}^k\}$ *converges* to \mathbf{x}^* , if for any given $\epsilon > 0$, there is a positive integer *K* such that

$$\|\mathbf{x}^k - \mathbf{x}^*\| \le \epsilon, \ \forall \ k \ge K.$$

We write this as $\mathbf{x}^k \to \mathbf{x}^*$ or $\lim_{k\to\infty} \mathbf{x}^k = \mathbf{x}^*$.

Definition

A sequence $\{\mathbf{x}^k\}$ is called a *Cauchy sequence* if, for any given $\epsilon > 0$, there is a positive integer K such that $\|\mathbf{x}^k - \mathbf{x}^m\| \le \epsilon$ for all $k, m \ge K$.

Sequences

Examples:

- The sequence $\{\mathbf{x}^k\}$ where $\mathbf{x}^k = (1 + 2^{-k}, 1/k)^T$ converges to $(1, 0)^T$.
- The sequence $\{x^k\}$ where $x^k = (-1)^k$ does not converge.

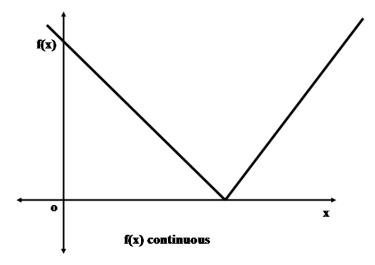
Continuous Functions

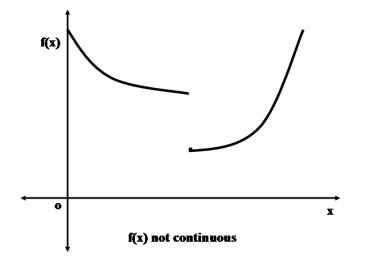
Definition

Let $S \subseteq \mathbb{R}^n$. A function $f : S \to \mathbb{R}$ is said to be *continuous* at $\bar{\mathbf{x}} \in S$ if for any given $\epsilon > 0$ there exists a $\delta > 0$ such that $\mathbf{x} \in S$ and $\|\mathbf{x} - \bar{\mathbf{x}}\| < \delta$ implies that $|f(\mathbf{x}) - f(\bar{\mathbf{x}})| < \epsilon$.

Note:

- The function *f* is said to be continuous on *A* ⊂ ℝⁿ if it is continuous at each point of *A*.
- When we say that *f* is continuous, we mean that *f* is continuous on its domain.
- C : Class of all continuous functions





Gradient

Definition

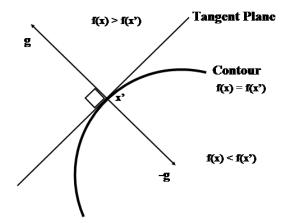
A continuous function, $f : \mathbb{R}^n \to \mathbb{R}$, is said to be continuously differentiable at $\mathbf{x} \in \mathbb{R}^n$, if $\frac{\partial f}{\partial x_i}(\mathbf{x})$ exists and is continuous, i = 1, ..., n.

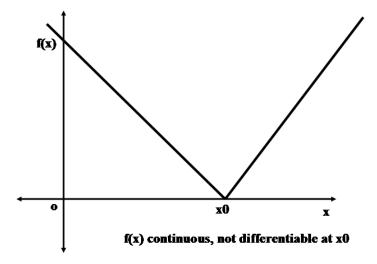
- C^1 : Class of functions whose first partial derivatives are continuous
- Assumption: $f \in C^1$

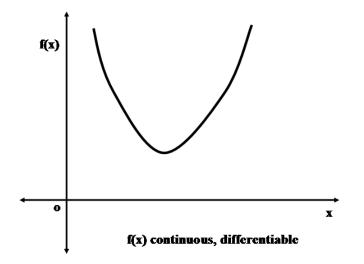
Definition

We define the *gradient* of f at \mathbf{x} to be the vector

$$\mathbf{g}(\mathbf{x}) \equiv \nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)^T$$







Directional Derivatives

Definition

Let $S \subset \mathbb{R}^n$ be an open set and $f : S \to \mathbb{R}$, f continuously differentiable in S. Then, for any $\mathbf{x} \in S$ and any nonzero $\mathbf{d} \in \mathbb{R}^n$, the *directional derivative* of f at \mathbf{x} in the direction of \mathbf{d} , defined by

$$\frac{\partial f}{\partial d}(\mathbf{x}) \equiv \lim_{\epsilon \to 0} \frac{f(\mathbf{x} + \epsilon \mathbf{d}) - f(\mathbf{x})}{\epsilon}$$

exists and equals $\nabla f(\mathbf{x})^T \mathbf{d}$.

Define $\phi : \mathbb{R} \to \mathbb{R}$ as $\phi(t) = f(\mathbf{x} + t\mathbf{d})$.

$$\frac{d\phi}{dt}(\alpha) = \nabla f(\mathbf{x} + \alpha \mathbf{d})^T \mathbf{d}$$

Substituting $\alpha = 0$ gives

$$\frac{\partial f}{\partial d}(\mathbf{x}) = \nabla f(\mathbf{x})^T \mathbf{d}$$

Shirish Shevade

Numerical Optimization

Hessian

Definition

A continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be *twice continuously differentiable* at $\mathbf{x} \in \mathbb{R}^n$, if $\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x})$ exists and is continuous.

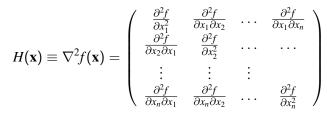
• C^2 : Class of twice continuously differentiable functions

Definition

Let $f \in C^2$. We define the *Hessian* of f at **x** to be the matrix

$$H(\mathbf{x}) \equiv \nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \dots & \dots \\ \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Hessian



Note: The Hessian matrix is symmetric.

Definition

Let $S \subset \mathbb{R}^n$ be an open set and $f : S \to \mathbb{R}$, f twice continuously differentiable in S. Then, for any $\mathbf{x} \in S$ and any nonzero $\mathbf{d} \in \mathbb{R}^n$, the *second directional derivative* of f at \mathbf{x} in the direction of \mathbf{d} equals $\mathbf{d}^T \nabla^2 f(\mathbf{x}) \mathbf{d}$.

Example

• Consider the Rosenbrock function,

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

The gradient of f at $\mathbf{x} = (x_1, x_2)^T$ is

$$\mathbf{g}(\mathbf{x}) \equiv \nabla f(\mathbf{x}) = \begin{pmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix}$$

The Hessian of f at $\mathbf{x} = (x_1, x_2)^T$ is

$$H(\mathbf{x}) \equiv \nabla^2(\mathbf{x}) = \begin{pmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}$$

Example

• Consider the function,

$$f(x_1, x_2) = x_1 e^{(-x_1^2 - x_2^2)}$$

The gradient of f at $\mathbf{x} = (x_1, x_2)^T$ is

$$\mathbf{g}(\mathbf{x}) \equiv \nabla f(\mathbf{x}) = \begin{pmatrix} (1 - 2x_1^2)e^{(-x_1^2 - x_2^2)} \\ -2x_1x_2e^{(-x_1^2 - x_2^2)} \end{pmatrix}$$

The Hessian of f at $\mathbf{x} = (x_1, x_2)^T$ is

$$H(\mathbf{x}) \equiv \nabla^2(\mathbf{x}) = \begin{pmatrix} (4x_1^3 - 6x_1)e^{(-x_1^2 - x_2^2)} & -2x_2(1 - 2x_1^2)e^{(-x_1^2 - x_2^2)} \\ -2x_2(1 - 2x_1^2)e^{(-x_1^2 - x_2^2)} & (4x_1x_2^2 - 2x_1)e^{(-x_1^2 - x_2^2)} \end{pmatrix}$$

Taylor Series

 \mathcal{C}^{∞} : Class of all functions for which the derivative of any order is continuous.

Let
$$f : \mathbb{R} \to \mathbb{R}, f \in \mathcal{C}^{\infty}$$
.

Let x^0 be the point about which we write the Taylor series.

$$f(x) = f(x^{0}) + f'(x^{0})(x - x^{0}) + \frac{1}{2}f''(x^{0})(x - x^{0})^{2} + \dots$$

Suppose we use only $f'(x^0)$. Then f(x) at x^0 can be approximated by

$$f(x) \approx f(x^0) + f'(x^0)(x - x^0).$$

Similarly, using $f'(x^0)$ and $f''(x^0)$, then the quadratic approximation of *f* at x^0 is

$$f(x) \approx f(x^0) + f'(x^0)(x - x^0) + \frac{1}{2}f''(x^0)(x - x^0)^2.$$

Truncated Taylor Series (First Order) Let $f : \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^1, \mathbf{x}^0 \in \mathbb{R}^n$. Then, for every $\mathbf{x} \in \mathbb{R}^n$,

$$f(\mathbf{x}) = f(\mathbf{x}^0) + \nabla f(\bar{\mathbf{x}}) \cdot (\mathbf{x} - \mathbf{x}^0)$$

where $\bar{\mathbf{x}}$ is some point that lies on the line segment joining \mathbf{x} and \mathbf{x}^0 ; $\bar{\mathbf{x}}$ depends on \mathbf{x} , \mathbf{x}^0 and f.

Truncated Taylor Series (Second Order)

Let $f : \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^2, \mathbf{x}^0 \in \mathbb{R}^n$. Then, for every $\mathbf{x} \in \mathbb{R}^n$,

$$f(\mathbf{x}) = f(\mathbf{x}^0) + \nabla f(\mathbf{x}^0) \cdot (\mathbf{x} - \mathbf{x}^0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^0)^T \nabla^2 f(\bar{\mathbf{x}}) (\mathbf{x} - \mathbf{x}^0)$$

where $\bar{\mathbf{x}}$ is some point that lies on the line segment joining \mathbf{x} and \mathbf{x}^0 ; $\bar{\mathbf{x}}$ depends on \mathbf{x} , \mathbf{x}^0 and f.

Proofs of Theorems

- $A \Rightarrow B$
 - If *A* is true, then *B* is true.
 - *Direct Proof* : Assume A and derive B.
 - Proof by contradiction : Assume "not B" and derive "not A"
- $A \iff B$
 - A if and only if B
 - *B* is a necessary and sufficient condition for *A*.
 - We must prove $A \Rightarrow B$ and $B \Rightarrow A$.

Proof by Mathematical Induction

Induction Principle: Let $N = \{1, 2, ...\}$ denote the set of natural numbers and let $M \subset N$. If the following properties hold:

• 1 is in M, and

(a) if
$$n$$
 is in M , then $n + 1$ is in M ,

then, M = N. *Example*: Define $S_n = 1 + 2 + ... + n$, n = 1, 2, 3, ...*Claim*: $S_n = \frac{n(n+1)}{2}$, n = 1, 2, 3, ...

Let M denote the set of natural numbers for which the above claim is true.

If n = 1, $S_1 = 1 = \frac{1 \times 2}{2}$. Hence 1 is in M. Now, assume that n is in M and consider S_{n+1} , $S_{n+1} = S_n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$. So, n + 1 is in M. From the induction principle, M = N and hence the claim is proved.

- Thomas G. B. and Finney R. L., Calculus and Analytic Geometry, Addison Wesley, 1995.
- Royden H. L., Real Analysis, Prentice Hall, 1988.