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Mathematical Background

Definition
Let a, b ∈ R. The closed interval [a, b] denotes the set,
{x ∈ R : a ≤ x ≤ b}. The set {x ∈ R : a < x < b} represents the
open interval (a, b).

Examples:

[−3, 2]: a closed interval

(1,∞): an open interval
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Definition
Let x0 ∈ Rn. A norm ball of radius r > 0 and centre x0 is given by
{x ∈ Rn : ‖x− x0‖ ≤ r} and will be denoted by B[x0, r].

Note: We will use B(x0, r) to denote {x ∈ Rn : ‖x− x0‖ < r}.
B[0, r]
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Definition
Let x ∈ S ⊆ Rn. x is called an interior point of S if there exists r > 0
such that B[x, r] ⊆ S. The set of all such points interior to S is called
the interior of S and is denoted by int(S).

Definition
A set S ⊆ Rn is said to be
an open set if S = int(S).

Examples:

B(0, r)
(1, 2) ∪ (3, 4) is an
open subset of R

B(0, r)
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Definition
A set S ∈ Rn is said to be closed if its complement in Rn,
Rn\S = {x ∈ Rn : x /∈ S} is open.

Example: [1, 2] ∪ [3, 4] is a closed subset of R

Definition
Let S ⊂ Rn. x ∈ Rn belongs to the closure of S,cl(S) if for each
ε > 0, S ∩ B[x, ε] 6= φ. The set S is said to be closed if S = cl(S).

Example: Let S = (1, 2] ∪ [3, 4). Then cl(S) = [1, 2] ∪ [3, 4] and
int(S) = (1, 2) ∪ (3, 4).
Remarks:

If S is open, then int(S) = S.

If S is closed, then cl(S) = S.
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Definition
The boundary of a set S is defined as bd(S) = cl(S)\int(S).

Definition
A set S ⊂ Rn is said to be bounded if there exists R (0 < R < ∞) and
x ∈ Rn, such that S ⊂ B(x, R).

Examples:

(1, 2] ∪ [3, 100): a bounded set

[0,∞): not a bounded set

Definition
A set S in Rn is said to be compact if it is closed and bounded.

Example:

[0, 100] ∪ [1000, 10000]
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Sequences

S ⊆ Rn

{xk} : A sequence of points belonging to S

Definition

A sequence {xk} converges to x∗, if for any given ε > 0, there is a
positive integer K such that

‖xk − x∗‖ ≤ ε, ∀ k ≥ K.

We write this as xk → x∗ or limk→∞ xk = x∗.

Definition

A sequence {xk} is called a Cauchy sequence if, for any given ε > 0,
there is a positive integer K such that ‖xk − xm‖ ≤ ε for all k, m ≥ K.
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Sequences
Examples:

The sequence {xk} where xk = (1 + 2−k, 1/k)T converges to
(1, 0)T .

The sequence {xk} where xk = (−1)k does not converge.
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Continuous Functions

Definition
Let S ⊆ Rn. A function f : S → R is said to be continuous at x̄ ∈ S if
for any given ε > 0 there exists a δ > 0 such that x ∈ S and
‖x− x̄‖ < δ implies that |f (x)− f (x̄)| < ε.

Note:

The function f is said to be continuous on A ⊂ Rn if it is
continuous at each point of A.

When we say that f is continuous, we mean that f is continuous
on its domain.

C : Class of all continuous functions
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Mathematical Background

Gradient

Definition
A continuous function, f : Rn → R, is said to be continuously
differentiable at x ∈ Rn, if ∂f

∂xi
(x) exists and is continuous,

i = 1, . . . , n.

C1 : Class of functions whose first partial derivatives are
continuous

Assumption: f ∈ C1

Definition
We define the gradient of f at x to be the vector

g(x) ≡ ∇f (x) =

(
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

)T
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Mathematical Background

Directional Derivatives
Definition
Let S ⊂ Rn be an open set and f : S → R, f continuously
differentiable in S. Then, for any x ∈ S and any nonzero d ∈ Rn, the
directional derivative of f at x in the direction of d, defined by

∂f
∂d

(x) ≡ lim
ε→0

f (x + εd)− f (x)

ε

exists and equals ∇f (x)Td.

Define φ : R → R as φ(t) = f (x + td).

dφ

dt
(α) = ∇f (x + αd)Td

Substituting α = 0 gives
∂f
∂d

(x) = ∇f (x)Td
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Hessian
Definition
A continuously differentiable function f : Rn → R is said to be twice
continuously differentiable at x ∈ Rn, if ∂2f

∂xi∂xj
(x) exists and is

continuous.

C2 : Class of twice continuously differentiable functions

Definition

Let f ∈ C2. We define the Hessian of f at x to be the matrix

H(x) ≡ ∇2f (x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . . . .

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n


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Hessian

H(x) ≡ ∇2f (x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . . . .

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n


Note: The Hessian matrix is symmetric.

Definition
Let S ⊂ Rn be an open set and f : S → R, f twice continuously
differentiable in S. Then, for any x ∈ S and any nonzero d ∈ Rn, the
second directional derivative of f at x in the direction of d equals
dT∇2f (x)d.
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Example

Consider the Rosenbrock function,

f (x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2

The gradient of f at x = (x1, x2)
T is

g(x) ≡ ∇f (x) =

(
−400x1(x2 − x2

1)− 2(1− x1)
200(x2 − x2

1)

)
The Hessian of f at x = (x1, x2)

T is

H(x) ≡ ∇2(x) =

(
1200x2

1 − 400x2 + 2 −400x1
−400x1 200

)
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Example

Consider the function,

f (x1, x2) = x1e(−x2
1−x2

2)

The gradient of f at x = (x1, x2)
T is

g(x) ≡ ∇f (x) =

(
(1− 2x2

1)e
(−x2

1−x2
2)

−2x1x2e(−x2
1−x2

2)

)

The Hessian of f at x = (x1, x2)
T is

H(x) ≡ ∇2(x) =

(
(4x3

1 − 6x1)e(−x2
1−x2

2) −2x2(1− 2x2
1)e

(−x2
1−x2

2)

−2x2(1− 2x2
1)e

(−x2
1−x2

2) (4x1x2
2 − 2x1)e(−x2

1−x2
2)

)
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Taylor Series
C∞: Class of all functions for which the derivative of any order is
continuous.
Let f : R → R, f ∈ C∞.
Let x0 be the point about which we write the Taylor series.

f (x) = f (x0) + f ′(x0)(x− x0) +
1
2

f ′′(x0)(x− x0)2 + . . .

Suppose we use only f ′(x0). Then f (x) at x0 can be approximated by

f (x) ≈ f (x0) + f ′(x0)(x− x0).

Similarly, using f ′(x0) and f ′′(x0), then the quadratic approximation
of f at x0 is

f (x) ≈ f (x0) + f ′(x0)(x− x0) +
1
2

f ′′(x0)(x− x0)2.
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Truncated Taylor Series (First Order)
Let f : Rn → R, f ∈ C1, x0 ∈ Rn.
Then, for every x ∈ Rn,

f (x) = f (x0) +∇f (x̄) · (x− x0)

where x̄ is some point that lies on the line segment joining x and x0; x̄
depends on x, x0 and f .
Truncated Taylor Series (Second Order)
Let f : Rn → R, f ∈ C2, x0 ∈ Rn.
Then, for every x ∈ Rn,

f (x) = f (x0) +∇f (x0) · (x− x0) +
1
2
(x− x0)T∇2f (x̄)(x− x0)

where x̄ is some point that lies on the line segment joining x and x0; x̄
depends on x, x0 and f .
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Proofs of Theorems

A ⇒ B

If A is true, then B is true.
Direct Proof : Assume A and derive B.
Proof by contradiction : Assume “not B" and derive “not A"

A ⇐⇒ B

A if and only if B
B is a necessary and sufficient condition for A.
We must prove A ⇒ B and B ⇒ A.
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Proof by Mathematical Induction
Induction Principle: Let N = {1, 2, . . .} denote the set of natural
numbers and let M ⊂ N. If the following properties hold:

1 1 is in M, and
2 if n is in M, then n + 1 is in M,

then, M = N.
Example: Define Sn = 1 + 2 + . . . + n, n = 1, 2, 3, . . .

Claim: Sn = n(n+1)
2 , n = 1, 2, 3, . . .

Let M denote the set of natural numbers for which the above claim is
true.
If n = 1, S1 = 1 = 1×2

2 . Hence 1 is in M.
Now, assume that n is in M and consider Sn+1,
Sn+1 = Sn + (n + 1) = n(n+1)

2 + (n + 1) = (n+1)(n+2)
2 .

So, n + 1 is in M.
From the induction principle, M = N and hence the claim is proved.
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