Numerical Optimization Mathematical Background (II)

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Definition

Let $a, b \in \mathbb{R}$. The *closed interval* [a, b] denotes the set, ${x \in \mathbb{R} : a \leq x \leq b}$. The set ${x \in \mathbb{R} : a \leq x \leq b}$ represents the *open interval* (*a*, *b*).

Examples:

- \bullet [-3, 2]: a closed interval
- \bullet (1, ∞): an open interval

Definition

Let $\mathbf{x}_0 \in \mathbb{R}^n$. A *norm ball* of radius $r > 0$ and centre \mathbf{x}_0 is given by $\{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{x}_0|| \le r \}$ and will be denoted by $B[\mathbf{x}_0, r]$.

Note: We will use $B(\mathbf{x}_0, r)$ to denote $\{\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x} - \mathbf{x}_0|| < r\}$. \bullet *B*[0, r]

Definition

Let $x \in S \subseteq \mathbb{R}^n$. *x* is called an *interior point* of *S* if there exists $r > 0$ such that $B[x, r] \subseteq S$. The set of all such points interior to *S* is called the *interior* of *S* and is denoted by int(*S*).

Definition

A set $S \in \mathbb{R}^n$ is said to be *closed* if its complement in \mathbb{R}^n , $\mathbb{R}^n \backslash S = \{x \in \mathbb{R}^n : x \notin S\}$ is open.

Example: $[1, 2] \cup [3, 4]$ is a closed subset of R

Definition

Let $S \subset \mathbb{R}^n$. $\mathbf{x} \in \mathbb{R}^n$ belongs to the *closure* of *S*,cl(*S*) if for each $\epsilon > 0$, $S \cap B[\mathbf{x}, \epsilon] \neq \phi$. The set *S* is said to be *closed* if $S = \text{cl}(S)$.

Example: Let $S = (1, 2] \cup [3, 4)$. Then $cl(S) = [1, 2] \cup [3, 4]$ and $int(S) = (1, 2) \cup (3, 4).$ *Remarks*:

- If *S* is open, then $int(S) = S$.
- If *S* is closed, then $cl(S) = S$.

Definition

The boundary of a set *S* is defined as $bd(S) = cl(S)\int int(S)$.

Definition

A set $S \subset \mathbb{R}^n$ is said to be bounded if there exists R ($0 < R < \infty$) and $\mathbf{x} \in \mathbb{R}^n$, such that $S \subset B(\mathbf{x}, R)$.

Examples:

- $(1, 2] \cup [3, 100)$: a bounded set
- $[0, \infty)$: not a bounded set

Definition

A set *S* in \mathbb{R}^n is said to be *compact* if it is closed and bounded.

Example:

 \bullet [0, 100] ∪ [1000, 10000]

Sequences

- $S \subseteq \mathbb{R}^n$
- {x *^k*} : A sequence of points belonging to *S*

Definition

A sequence $\{x^k\}$ *converges* to x^* , if for any given $\epsilon > 0$, there is a positive integer *K* such that

$$
\|\mathbf{x}^k - \mathbf{x}^*\| \le \epsilon, \ \ \forall \ k \ge K.
$$

We write this as $\mathbf{x}^k \to \mathbf{x}^*$ or $\lim_{k \to \infty} \mathbf{x}^k = \mathbf{x}^*$.

Definition

A sequence $\{x^k\}$ is called a *Cauchy sequence* if, for any given $\epsilon > 0$, there is a positive integer *K* such that $||\mathbf{x}^k - \mathbf{x}^m|| \leq \epsilon$ for all $k, m \geq K$.

Sequences

Examples:

- The sequence $\{x^k\}$ where $x^k = (1 + 2^{-k}, 1/k)^T$ converges to $(1, 0)^T$.
- The sequence $\{x^k\}$ where $x^k = (-1)^k$ does not converge.

Continuous Functions

Definition

Let $S \subseteq \mathbb{R}^n$. A function $f : S \to \mathbb{R}$ is said to be *continuous* at $\bar{\mathbf{x}} \in S$ if for any given $\epsilon > 0$ there exists a $\delta > 0$ such that $\mathbf{x} \in S$ and $\|\mathbf{x} - \bar{\mathbf{x}}\| < \delta$ implies that $|f(\mathbf{x}) - f(\bar{\mathbf{x}})| < \epsilon$.

Note:

- The function *f* is said to be continuous on $A \subset \mathbb{R}^n$ if it is continuous at each point of *A*.
- When we say that *f* is continuous, we mean that *f* is continuous on its domain.
- \bullet C : Class of all continuous functions

Gradient

Definition

A continuous function, $f : \mathbb{R}^n \to \mathbb{R}$, is said to be continuously differentiable at $\mathbf{x} \in \mathbb{R}^n$, if $\frac{\partial f}{\partial x_i}(\mathbf{x})$ exists and is continuous, $i = 1, \ldots, n$.

- $C¹$: Class of functions whose first partial derivatives are continuous
- Assumption: $f \in \mathcal{C}^1$

Definition

We define the *gradient* of *f* at x to be the vector

$$
\mathbf{g}(\mathbf{x}) \equiv \nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)^T
$$

Directional Derivatives

Definition

Let $S \subset \mathbb{R}^n$ be an open set and $f : S \to \mathbb{R}, f$ continuously differentiable in *S*. Then, for any $\mathbf{x} \in S$ and any nonzero $\mathbf{d} \in \mathbb{R}^n$, the *directional derivative* of *f* at x in the direction of d, defined by

$$
\frac{\partial f}{\partial d}(\mathbf{x}) \equiv \lim_{\epsilon \to 0} \frac{f(\mathbf{x} + \epsilon \mathbf{d}) - f(\mathbf{x})}{\epsilon}
$$

exists and equals $\nabla f(\mathbf{x})^T \mathbf{d}$.

Define $\phi : \mathbb{R} \to \mathbb{R}$ as $\phi(t) = f(\mathbf{x} + t\mathbf{d}).$

$$
\frac{d\phi}{dt}(\alpha) = \nabla f(\mathbf{x} + \alpha \mathbf{d})^T \mathbf{d}
$$

Substituting $\alpha = 0$ gives

$$
\frac{\partial f}{\partial d}(\mathbf{x}) = \nabla f(\mathbf{x})^T \mathbf{d}
$$

Shirish Shevade [Numerical Optimization](#page-0-0)

Hessian

Definition

A continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be *twice continuously differentiable* at $\mathbf{x} \in \mathbb{R}^n$, if $\frac{\partial^2 f}{\partial x \cdot \partial x}$ ∂*xi*∂*x^j* (x) exists and is continuous.

 C^2 : Class of twice continuously differentiable functions

Definition

Let $f \in C^2$. We define the *Hessian* of f at \bf{x} to be the matrix

$$
H(\mathbf{x}) \equiv \nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}
$$

Hessian

Note: The Hessian matrix is symmetric.

Definition

Let $S \subset \mathbb{R}^n$ be an open set and $f : S \to \mathbb{R}, f$ twice continuously differentiable in *S*. Then, for any $\mathbf{x} \in S$ and any nonzero $\mathbf{d} \in \mathbb{R}^n$, the *second directional derivative* of *f* at x in the direction of d equals $\mathbf{d}^T \nabla^2 f(\mathbf{x}) \mathbf{d}$.

Example

• Consider the Rosenbrock function,

$$
f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2
$$

The gradient of *f* at $\mathbf{x} = (x_1, x_2)^T$ is

$$
\mathbf{g}(\mathbf{x}) \equiv \nabla f(\mathbf{x}) = \begin{pmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix}
$$

The Hessian of *f* at $\mathbf{x} = (x_1, x_2)^T$ is

$$
H(\mathbf{x}) \equiv \nabla^2(\mathbf{x}) = \begin{pmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}
$$

Example

• Consider the function,

$$
f(x_1,x_2)=x_1e^{(-x_1^2-x_2^2)}
$$

The gradient of *f* at $\mathbf{x} = (x_1, x_2)^T$ is

$$
\mathbf{g}(\mathbf{x}) \equiv \nabla f(\mathbf{x}) = \begin{pmatrix} (1 - 2x_1^2)e^{(-x_1^2 - x_2^2)} \\ -2x_1x_2e^{(-x_1^2 - x_2^2)} \end{pmatrix}
$$

The Hessian of *f* at $\mathbf{x} = (x_1, x_2)^T$ is

$$
H(\mathbf{x}) \equiv \nabla^2(\mathbf{x}) = \begin{pmatrix} (4x_1^3 - 6x_1)e^{(-x_1^2 - x_2^2)} & -2x_2(1 - 2x_1^2)e^{(-x_1^2 - x_2^2)} \\ -2x_2(1 - 2x_1^2)e^{(-x_1^2 - x_2^2)} & (4x_1x_2^2 - 2x_1)e^{(-x_1^2 - x_2^2)} \end{pmatrix}
$$

Taylor Series

 \mathcal{C}^{∞} : Class of all functions for which the derivative of any order is continuous.

Let
$$
f : \mathbb{R} \to \mathbb{R}, f \in C^{\infty}
$$
.

Let x^0 be the point about which we write the Taylor series.

$$
f(x) = f(x0) + f'(x0)(x - x0) + \frac{1}{2}f''(x0)(x - x0)2 + ...
$$

Suppose we use only $f'(x^0)$. Then $f(x)$ at x^0 can be approximated by

$$
f(x) \approx f(x^0) + f'(x^0)(x - x^0).
$$

Similarly, using $f'(x^0)$ and $f''(x^0)$, then the quadratic approximation of f at x^0 is

$$
f(x) \approx f(x^0) + f'(x^0)(x - x^0) + \frac{1}{2}f''(x^0)(x - x^0)^2.
$$

Truncated Taylor Series (First Order) Let $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^1$, $\mathbf{x}^0 \in \mathbb{R}^n$. Then, for every $\mathbf{x} \in \mathbb{R}^n$,

$$
f(\mathbf{x}) = f(\mathbf{x}^0) + \nabla f(\bar{\mathbf{x}}) \cdot (\mathbf{x} - \mathbf{x}^0)
$$

where \bar{x} is some point that lies on the line segment joining x and x^0 ; \bar{x} depends on \mathbf{x}, \mathbf{x}^0 and f .

Truncated Taylor Series (Second Order)

Let $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^2$, $\mathbf{x}^0 \in \mathbb{R}^n$. Then, for every $\mathbf{x} \in \mathbb{R}^n$,

$$
f(\mathbf{x}) = f(\mathbf{x}^0) + \nabla f(\mathbf{x}^0) \cdot (\mathbf{x} - \mathbf{x}^0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}^0)^T \nabla^2 f(\bar{\mathbf{x}}) (\mathbf{x} - \mathbf{x}^0)
$$

where \bar{x} is some point that lies on the line segment joining x and x^0 ; \bar{x} depends on \mathbf{x}, \mathbf{x}^0 and f .

Proofs of Theorems

- $A \Rightarrow B$
	- If *A* is true, then *B* is true.
	- *Direct Proof* : Assume *A* and derive *B*.
	- *Proof by contradiction* : Assume "not *B*" and derive "not *A*"
- $A \Longleftrightarrow B$
	- *A* if and only if *B*
	- *B* is a necessary and sufficient condition for *A*.
	- We must prove $A \Rightarrow B$ and $B \Rightarrow A$.

Proof by Mathematical Induction

Induction Principle: Let $N = \{1, 2, ...\}$ denote the set of natural numbers and let $M \subset N$. If the following properties hold:

 \bigcirc 1 is in *M*, and

• if *n* is in *M*, then
$$
n + 1
$$
 is in *M*,

then, $M = N$. *Example*: Define $S_n = 1 + 2 + ... + n$, $n = 1, 2, 3, ...$ *Claim*: $S_n = \frac{n(n+1)}{2}$ $\frac{n+1}{2}, \quad n=1,2,3,\ldots$

Let *M* denote the set of natural numbers for which the above claim is true.

If $n = 1, S_1 = 1 = \frac{1 \times 2}{2}$ $\frac{X2}{2}$. Hence 1 is in *M*. Now, assume that *n* is in *M* and consider S_{n+1} , $S_{n+1} = S_n + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}.$ So, $n + 1$ is in M.

From the induction principle, $M = N$ and hence the claim is proved.

- Thomas G. B. and Finney R. L., Calculus and Analytic Geometry, Addison Wesley, 1995.
- Royden H. L., Real Analysis, Prentice Hall, 1988.