
Numerical Optimization
Unconstrained Optimization (I)

Shirish Shevade

Computer Science and Automation
Indian Institute of Science
Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Shirish Shevade Numerical Optimization



Global Minimum

Let X ⊆ Rn and f : X → R
Consider the problem,

Constrained optimization problem

minx f (x)

s.t. x ∈ X

Definition
x∗ ∈ X is is said to be a global minimum of f over X if
f (x∗) ≤ f (x) ∀ x ∈ X.

Question: Under what conditions on f and X does the function f attain
its maximum and/or minimum in the set X?
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Global Minimum

X = R, f : X → R defined as f (x) = x3.
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f attains neither a minimum nor a maximum on X

Note: X is closed, but not bounded; that is, X is not a compact set
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Constrained Optimization

X = (a, b), f : X → R defined as f (x) = x.

f attains neither a minimum nor a maximum on X

Note:

X is bounded, but not closed; that is, X is not a compact set

f does attain infimum at a and supremum at b
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Constrained Optimization

X = [−1, 1], f : X → R defined as f (x) = x if −1 < x < 1 and 0
otherwise.

f attains neither a minimum nor a maximum on X

Note:

X is closed and bounded; X is compact

f is not continuous on X
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Weierstrass’ Theorem

Theorem
Let X ⊂ Rn be a nonempty compact set and f : X → R be a
continuous function on X. Then, f attains a maximum and a minimum
on X; that is, there exist x1 and x2 in X such that

f (x1) ≥ f (x) ≥ f (x2) ∀x ∈ X.

Note: Weierstrass’ Theorem provides only sufficient conditions for
the existence of optima.
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Constrained Optimization

X = [a, b], f : X → R

f (x) not continuous; but f attains a minimum
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Constrained Optimization

X = R, f : X → R defined as f (x) = (x− 2)2.
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f (x) continuous, X not compact; but f attains a minimum
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Unconstrained Optimization
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Global Minimum

Let X ⊆ Rn and f : X → R
Consider the problem,

Constrained optimization problem

min
x

f (x)

s.t. x ∈ X

Definition
x∗ ∈ X is is said to be a global minimum of f over X if
f (x∗) ≤ f (x) ∀ x ∈ X.

Global minimum is difficult to find or characterize for a general
nonlinear function
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Local Minimum

Let X ⊆ Rn and f : X → R
Consider the problem,

Constrained optimization problem

min
x

f (x)

s.t. x ∈ X

Definition
x∗ ∈ X is is said to be a local minimum of f if there is a δ > 0 such
that f (x∗) ≤ f (x) ∀ x ∈ X ∩ B(x∗, δ).
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Strict Local Minimum

Definition
x∗ ∈ X is is said to be a strict local minimum of f if
f (x∗) < f (x) ∀ x ∈ X ∩ B(x∗, δ), x 6= x∗.
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Different Types of Minima

Shirish Shevade Numerical Optimization



Global Minimum and Local Minimum

Every global minimum is also a local minimum.

It may not be possible to identify a global min by finding all
local minima

f does not have a global minimum
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Optimization Problems

Let X ⊆ Rn and f : X → R

Constrained optimization problem:

min
x

f (x)

s.t. x ∈ X

Unconstrained optimization problem:

min
x∈Rn

f (x)

Now, consider f : R → R

Unconstrained one-dimensional optimization problem:

min
x∈R

f (x)
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Unconstrained Optimization

Let f : R → R

Unconstrained problem

min
x∈R

f (x)

What are necessary and sufficient conditions for a local
minimum?

Necessary conditions: Conditions satisfied by every local
minimum
Sufficient conditions: Conditions which guarantee a local
minimum

Easy to characterize a local minimum if f is sufficiently smooth
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First Order Necessary Condition

Let f : R → R, f ∈ C1.
Consider the problem, minx∈R f (x)

Result (First Order Necessary Condition)

If x∗ is a local minimum of f , then f ′(x∗) = 0.

Proof.

Suppose f ′(x∗) > 0. f ∈ C1 ⇒ f ′ ∈ C0.
Let D = (x∗ − δ, x∗ + δ) be chosen such that f ′(x) > 0 ∀ x ∈ D.
Therefore, for any x ∈ D, using first order truncated Taylor series,

f (x) = f (x∗) + f ′(x̄)(x− x∗) where x̄ ∈ (x∗, x).

Choosing x ∈ (x∗ − δ, x∗) we get,

f (x) < f (x∗), a contradiction.

Similarly, one can show, f (x) < f (x∗) if f ′(x∗) < 0.

Shirish Shevade Numerical Optimization



First Order Necessary Condition
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f (x) = (x− 2)2

f ′(2) = 0
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f (x) = −x2

f ′(0) = 0

Slope of the function is zero at local minimum and also at local
maximum
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First Order Necessary Condition
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f (x) = (x− 2)2

f ′(2) = 0
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f (x) = x3

f ′(0) = 0

Slope of the function is zero at a saddle point
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Stationary Points

Let f : R → R, f ∈ C1.
Consider the problem, minx∈R f (x).

Definition
x∗ is called a stationary point if f ′(x∗) = 0.

f ′(x∗) = 0 is a necessary but not sufficient condition for a local
minimum.

Question: How do we ensure that a stationary point is a local
minimum?
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Second Order Necessary Conditions
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f (x) = (x− 2)2, f ′(2) = 0
f ′′(2) = 4
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f (x) = −x2, f ′(0) = 0
f ′′(0) = −2
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Second Order Necessary Conditions

Let f : R → R, f ∈ C2.
Consider the problem, minx∈R f (x)

Result (Second Order Necessary Conditions)

If x∗ is a local minimum of f , then f ′(x∗) = 0 and f ′′(x∗) ≥ 0.

Proof.
By the first order necessary conditions, f ′(x∗) = 0.
Suppose f ′′(x∗) < 0. Now, f ∈ C2 ⇒ f ′′ ∈ C0.
Let D = (x∗ − δ, x∗ + δ) be chosen such that f ′′(x) < 0 ∀ x ∈ D.
Therefore, for any x ∈ D, using second order truncated Taylor series,

f (x) = f (x∗) + f ′(x∗)(x− x∗) +
1
2

f ′′(x̄)(x− x∗)2 where x̄ ∈ (x∗, x).

Using f ′(x∗) = 0 and f ′′(x̄) < 0 ∀ x ∈ D, we get,

f (x) < f (x∗), a contradiction.
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Second Order Sufficient Conditions

Are the second order necessary conditions also sufficient?
No
Example: min x3 subject to x ∈ R
At x∗ = 0, f ′(x∗) = f ′′(x∗) = 0; but x∗ is a saddle point!
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f (x) = x3

f ′(0) = f ′′(0) = 0
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Second Order Sufficient Conditions

Let f : R → R, f ∈ C2.
Consider the problem, minx∈R f (x)

Result (Second Order Sufficient Conditions)

If x∗ ∈ R such that f ′(x∗) = 0 and f ′′(x∗) > 0, then x∗ is a strict local
minimum of f over R.

Proof.

f ∈ C2 ⇒ f ′′ ∈ C0.
Let D = (x∗ − δ, x∗ + δ) be chosen such that f ′′(x) > 0 ∀ x ∈ D.
Therefore, for any x ∈ D, using second order truncated Taylor series,

f (x) = f (x∗) + f ′(x∗)(x− x∗) +
1
2

f ′′(x̄)(x− x∗)2 where x̄ ∈ (x∗, x).

Therefore, f ′(x∗) = 0 ⇒ f (x)− f (x∗) = 1
2 f ′′(x̄)(x− x∗)2 > 0.

That is, f (x) > f (x∗) ∀ x ∈ D ⇒ x∗ is a strict local minimum.
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Second Order Sufficient Conditions

Note: Second order sufficient conditions

guarantee that the local minimum is strict, and

are not necessary. (For f (x) = x4, x∗ = 0 is a strict local
minimum; but f ′(x∗) = f ′′(x∗) = 0.)
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Sufficient Optimality Conditions

Let f : R → R, f ∈ C∞.

Let us assume that f is not a constant function.

Let the k-th derivative of f at x be denoted by f (k)(x).

Consider the problem, minx∈R f (x).

Result
x∗ is a local minimum if and only if the first non-zero element of the
sequence {f (k)(x∗)} is positive and occurs at even positive k.

Result
Consider the problem, maxx∈R f (x). x∗ is a local maximum if and
only if the first non-zero element of the sequence {f (k)(x∗)} is
negative and occurs at even positive k.
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Example 1

Consider the problem,

min
x∈R

(x2 − 1)2

Find the stationary points of f (x) = (x2 − 1)2

f ′(x) = 0 ⇒ 4x(x2 − 1) = 0 ⇒ f ′(0) = f ′(1) = f ′(−1) = 0

Second Derivatives

f ′′(1) = f ′′(−1) = 8 > 0 ⇒ 1 and −1 are strict local minima
f ′′(0) = −4 < 0 ⇒ 0 is a strict local maximum
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Example 2

Consider the problem,

min
x∈R

(x2 − 1)3

Find the stationary points of f (x) = (x2 − 1)3

f ′(x) = 0 ⇒ 6x(x2 − 1)2 = 0 ⇒ f ′(0) = f ′(1) = f ′(−1) = 0

Second Derivative: f ′′(x) = 6(x2 − 1)(5x2 − 1)

f ′′(0) = 6 > 0 ⇒ 0 is a strict local minimum
f ′′(1) = f ′′(−1) = 0 ⇒ Higher order derivatives need to be
considered

Third derivative: f ′′′(x) = 12(4x + 1)(x2 − 1) + 48x3

f ′′′(1) = 48 > 0
f ′′′(−1) = −48 < 0

}
⇒ 1 and − 1 are saddle points
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Example 3

Consider the problem, minx∈R x4

Find the stationary points of f (x) = x4

f ′(x) = 0 ⇒ 4x3 = 0 ⇒ f ′(0) = 0

Second Derivative: f ′′(x) = 12x2

f ′′(0) = 0
Third Derivative: f ′′′(x) = 24x

f ′′′(0) = 0
Fourth Derivative: f ′′′′(x) = 24

f ′′′′(0) = 24

f ′(0) = f ′′(0) = f ′′′(0) = 0, f ′′′′(0) = 24 > 0
⇒ 0 is a strict local minimum
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Necessity of an Algorithm

Consider the problem

min
x∈R

(x− 2)2

We first find the stationary points (which satisfy f ′(x) = 0).

f ′(x) = 0 ⇒ 2(x− 2) = 0 ⇒ x∗ = 2.

f ′′(2) = 2 > 0 ⇒ x∗ is a strict local minimum.

Stationary points are found by solving a nonlinear equation,

g(x) ≡ f ′(x) = 0.

Finding the real roots of g(x) may not be always easy.
Consider the problem to minimize f (x) = x2 + ex.
g(x) = 2x + ex

Need an algorithm to find x which satisfies g(x) = 0.
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