Numerical Optimization Unconstrained Optimization (I)

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Global Minimum

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$ Consider the problem,

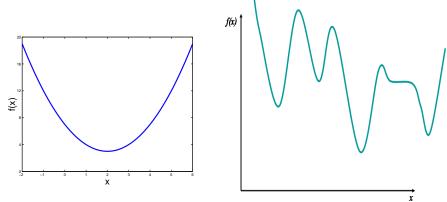
Constrained optimization problem

 $\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{s.t.} & \boldsymbol{x} \in X \end{array}$

Definition

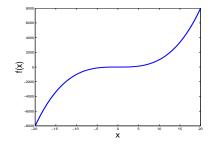
 $\mathbf{x}^* \in X$ is is said to be a *global minimum* of f over X if $f(\mathbf{x}^*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in X.$

Question: Under what conditions on *f* and *X* does the function *f* attain its maximum and/or minimum in the set *X*?



Global Minimum

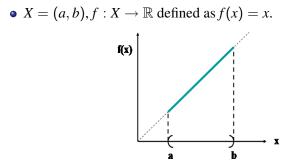
• $X = \mathbb{R}, f : X \to \mathbb{R}$ defined as $f(x) = x^3$.



f attains neither a minimum nor a maximum on X

Note: X is closed, but not bounded; that is, X is not a compact set

Constrained Optimization



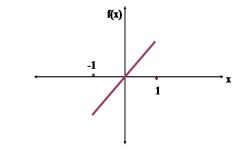
f attains neither a minimum nor a maximum on X

Note:

- X is bounded, but not closed; that is, X is not a compact set
- f does attain infimum at a and supremum at b

Constrained Optimization

• $X = [-1, 1], f : X \to \mathbb{R}$ defined as f(x) = x if -1 < x < 1 and 0 otherwise.



f attains neither a minimum nor a maximum on X

Note:

- X is closed and bounded; X is compact
- *f* is not continuous on *X*

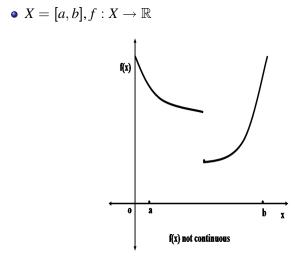
Theorem

Let $X \subset \mathbb{R}^n$ be a nonempty compact set and $f : X \to \mathbb{R}$ be a continuous function on X. Then, f attains a maximum and a minimum on X; that is, there exist \mathbf{x}_1 and \mathbf{x}_2 in X such that

$$f(\boldsymbol{x}_1) \geq f(\boldsymbol{x}) \geq f(\boldsymbol{x}_2) \quad \forall \boldsymbol{x} \in X.$$

Note: Weierstrass' Theorem provides only *sufficient* conditions for the existence of optima.

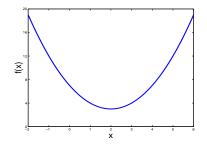
Constrained Optimization



• f(x) not continuous; but f attains a minimum

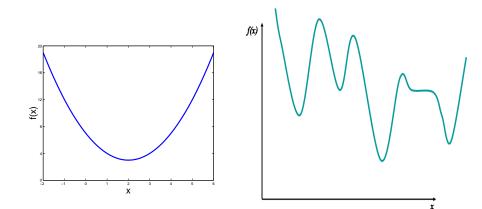
Constrained Optimization

•
$$X = \mathbb{R}, f : X \to \mathbb{R}$$
 defined as $f(x) = (x - 2)^2$.



• f(x) continuous, X not compact; but f attains a minimum

Unconstrained Optimization



Global Minimum

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$ Consider the problem,

Constrained optimization problem

 $\begin{array}{ll} \min_{x} & f(x) \\ \text{s.t.} & x \in X \end{array}$

Definition

 $\mathbf{x}^* \in X$ is is said to be a *global minimum* of f over X if $f(\mathbf{x}^*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in X.$

• Global minimum is difficult to find or characterize for a general nonlinear function

Local Minimum

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$ Consider the problem,

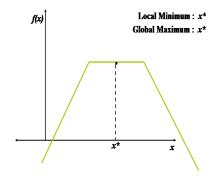
Constrained optimization problem

 $\begin{array}{ll} \min_{x} & f(x) \\ \text{s.t.} & x \in X \end{array}$

Definition

 $\mathbf{x}^* \in X$ is is said to be a *local minimum* of f if there is a $\delta > 0$ such that $f(\mathbf{x}^*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in X \cap B(\mathbf{x}^*, \delta)$.

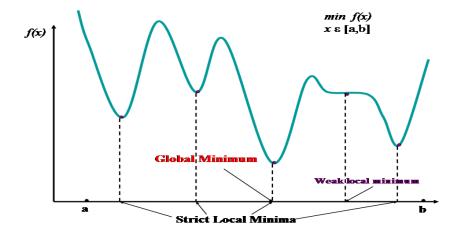
Strict Local Minimum



Definition

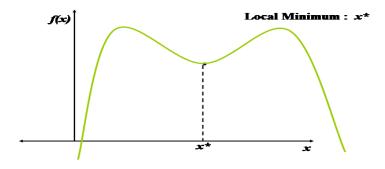
 $\mathbf{x}^* \in X$ is is said to be a *strict local minimum* of f if $f(\mathbf{x}^*) < f(\mathbf{x}) \quad \forall \mathbf{x} \in X \cap B(\mathbf{x}^*, \delta), \mathbf{x} \neq \mathbf{x}^*.$

Different Types of Minima



Global Minimum and Local Minimum

- Every global minimum is also a local minimum.
- It may not be possible to identify a global min by finding all local minima



• f does not have a global minimum

Optimization Problems

Let $X \subseteq \mathbb{R}^n$ and $f: X \to \mathbb{R}$

• Constrained optimization problem:

 $\min_{x} \quad f(x)$
s.t. $x \in X$

• Unconstrained optimization problem:

 $\min_{x\in\mathbb{R}^n} f(x)$

Now, consider $f : \mathbb{R} \to \mathbb{R}$

• Unconstrained one-dimensional optimization problem:

 $\min_{x\in\mathbb{R}} f(x)$

Unconstrained Optimization

Let $f : \mathbb{R} \to \mathbb{R}$

Unconstrained problem

$$\min_{x\in\mathbb{R}} f(x)$$

- What are *necessary and sufficient conditions* for a local minimum?
 - Necessary conditions: Conditions satisfied by every local minimum
 - Sufficient conditions: Conditions which guarantee a local minimum
- Easy to characterize a local minimum if f is sufficiently smooth

First Order Necessary Condition

Let $f : \mathbb{R} \to \mathbb{R}$, $f \in \mathcal{C}^1$. Consider the problem, $\min_{x \in \mathbb{R}} f(x)$

Result (First Order Necessary Condition)

If x^* is a local minimum of f, then $f'(x^*) = 0$.

Proof.

Suppose $f'(x^*) > 0$. $f \in C^1 \Rightarrow f' \in C^0$. Let $D = (x^* - \delta, x^* + \delta)$ be chosen such that $f'(x) > 0 \quad \forall x \in D$. Therefore, for any $x \in D$, using first order truncated Taylor series,

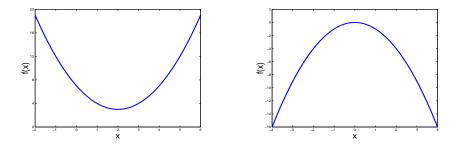
$$f(x) = f(x^*) + f'(\bar{x})(x - x^*)$$
 where $\bar{x} \in (x^*, x)$.

Choosing $x \in (x^* - \delta, x^*)$ we get,

 $f(x) < f(x^*)$, a contradiction.

Similarly, one can show, $f(x) < f(x^*)$ if $f'(x^*) < 0$.

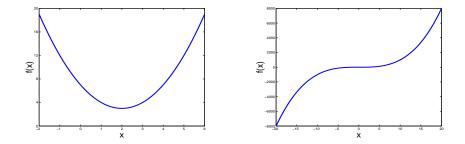
First Order Necessary Condition



$$f(x) = (x - 2)^2 f(x) = -x^2 f'(2) = 0 f'(0) = 0$$

Slope of the function is zero at local minimum and also at local maximum

First Order Necessary Condition



$$f(x) = (x - 2)^2 f(x) = x^3 f'(2) = 0 f'(0) = 0$$

Slope of the function is zero at a saddle point

Let $f : \mathbb{R} \to \mathbb{R}, f \in \mathcal{C}^1$. Consider the problem, $\min_{x \in \mathbb{R}} f(x)$.

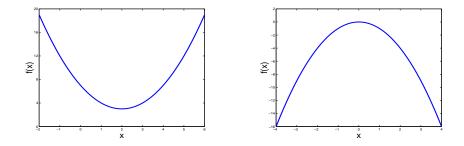
Definition

 x^* is called a *stationary point* if $f'(x^*) = 0$.

 $f'(x^*) = 0$ is a *necessary* but not sufficient condition for a local minimum.

Question: How do we ensure that a stationary point is a local minimum?

Second Order Necessary Conditions



$$f(x) = (x-2)^2, f'(2) = 0 \qquad f(x) = -x^2, f'(0) = 0$$

$$f''(2) = 4 \qquad f''(0) = -2$$

Second Order Necessary Conditions

Let $f : \mathbb{R} \to \mathbb{R}, f \in C^2$. Consider the problem, $\min_{x \in \mathbb{R}} f(x)$

Result (Second Order Necessary Conditions)

If x^* is a local minimum of f, then $f'(x^*) = 0$ and $f''(x^*) \ge 0$.

Proof.

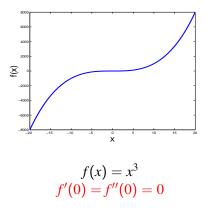
By the first order necessary conditions, $f'(x^*) = 0$. Suppose $f''(x^*) < 0$. Now, $f \in C^2 \Rightarrow f'' \in C^0$. Let $D = (x^* - \delta, x^* + \delta)$ be chosen such that $f''(x) < 0 \quad \forall x \in D$. Therefore, for any $x \in D$, using second order truncated Taylor series,

$$f(x) = f(x^*) + f'(x^*)(x - x^*) + \frac{1}{2}f''(\bar{x})(x - x^*)^2 \quad \text{where } \bar{x} \in (x^*, x).$$

Using $f'(x^*) = 0$ and $f''(\bar{x}) < 0 \quad \forall x \in D$, we get,
 $f(x) < f(x^*)$, a contradiction.

Second Order Sufficient Conditions

- Are the second order necessary conditions also sufficient?
 - No
 - Example: min x^3 subject to $x \in \mathbb{R}$
 - At $x^* = 0$, $f'(x^*) = f''(x^*) = 0$; but x^* is a saddle point!



Second Order Sufficient Conditions

Let $f : \mathbb{R} \to \mathbb{R}, f \in C^2$. Consider the problem, $\min_{x \in \mathbb{R}} f(x)$

Result (Second Order Sufficient Conditions)

If $x^* \in \mathbb{R}$ such that $f'(x^*) = 0$ and $f''(x^*) > 0$, then x^* is a *strict* local minimum of f over \mathbb{R} .

Proof.

 $f \in C^2 \Rightarrow f'' \in C^0$. Let $D = (x^* - \delta, x^* + \delta)$ be chosen such that $f''(x) > 0 \quad \forall x \in D$. Therefore, for any $x \in D$, using second order truncated Taylor series,

$$f(x) = f(x^*) + f'(x^*)(x - x^*) + \frac{1}{2}f''(\bar{x})(x - x^*)^2$$
 where $\bar{x} \in (x^*, x)$.

Therefore, $f'(x^*) = 0 \Rightarrow f(x) - f(x^*) = \frac{1}{2}f''(\bar{x})(x - x^*)^2 > 0$. That is, $f(x) > f(x^*) \quad \forall x \in D \Rightarrow x^*$ is a strict local minimum. Note: Second order sufficient conditions

- guarantee that the local minimum is strict, and
- are *not necessary*. (For $f(x) = x^4$, $x^* = 0$ is a strict local minimum; but $f'(x^*) = f''(x^*) = 0$.)

Sufficient Optimality Conditions

- Let $f : \mathbb{R} \to \mathbb{R}, f \in \mathcal{C}^{\infty}$.
- Let us assume that *f* is not a constant function.
- Let the *k*-th derivative of *f* at *x* be denoted by $f^{(k)}(x)$.
- Consider the problem, $\min_{x \in \mathbb{R}} f(x)$.

Result

 x^* is a local minimum if and only if the first non-zero element of the sequence $\{f^{(k)}(x^*)\}$ is positive and occurs at even positive k.

Result

Consider the problem, $\max_{x \in \mathbb{R}} f(x)$. x^* is a local maximum if and only if the first non-zero element of the sequence $\{f^{(k)}(x^*)\}$ is negative and occurs at even positive k.

• Consider the problem,

$$\min_{x\in\mathbb{R}} \quad (x^2-1)^2$$

• Find the stationary points of $f(x) = (x^2 - 1)^2$

$$f'(x) = 0 \Rightarrow 4x(x^2 - 1) = 0 \Rightarrow f'(0) = f'(1) = f'(-1) = 0$$

Second Derivatives

f''(1) = f''(-1) = 8 > 0 ⇒ 1 and -1 are strict local minima
 f''(0) = -4 < 0 ⇒ 0 is a strict local maximum

• Consider the problem,

$$\min_{x\in\mathbb{R}} \quad (x^2-1)^3$$

• Find the stationary points of $f(x) = (x^2 - 1)^3$

$$f'(x) = 0 \Rightarrow 6x(x^2 - 1)^2 = 0 \Rightarrow f'(0) = f'(1) = f'(-1) = 0$$

• Second Derivative: $f''(x) = 6(x^2 - 1)(5x^2 - 1)$

- $f''(0) = 6 > 0 \Rightarrow 0$ is a strict local minimum
- f''(1) = f''(-1) = 0 ⇒ Higher order derivatives need to be considered
- Third derivative: $f'''(x) = 12(4x+1)(x^2-1) + 48x^3$

$$\begin{cases} f'''(1) = 48 > 0 \\ f'''(-1) = -48 < 0 \end{cases}$$
 \Rightarrow 1 and -1 are saddle points

Example 3

- Consider the problem, $\min_{x \in \mathbb{R}} x^4$
- Find the stationary points of $f(x) = x^4$

$$f'(x) = 0 \Rightarrow 4x^3 = 0 \Rightarrow f'(0) = 0$$

- Second Derivative: $f''(x) = 12x^2$
 - f''(0) = 0
- Third Derivative: f'''(x) = 24x

•
$$f'''(0) = 0$$

- Fourth Derivative: f'''(x) = 24
 f''''(0) = 24
- f'(0) = f''(0) = f'''(0) = 0, f''''(0) = 24 > 0
 ⇒ 0 is a strict local minimum

Necessity of an Algorithm

• Consider the problem

$$\min_{x\in\mathbb{R}} \ (x-2)^2$$

• We first find the stationary points (which satisfy f'(x) = 0).

$$f'(x) = 0 \Rightarrow 2(x-2) = 0 \Rightarrow x^* = 2.$$

• $f''(2) = 2 > 0 \Rightarrow x^*$ is a strict local minimum.

• Stationary points are found by solving a nonlinear equation,

$$g(x)\equiv f'(x)=0.$$

- Finding the real roots of g(x) may not be always easy.
 - Consider the problem to minimize $f(x) = x^2 + e^x$.
 - $g(x) = 2x + e^x$
 - Need an algorithm to find x which satisfies g(x) = 0.