NPTEL Course on Numerical Optimization Module 4 : Convex Sets Practice Problems

- 1. Which of the following sets are convex?
 - { $\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2^2 \ge 1$ }
 - { $\mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2^2 = 1$ }
 - $\{\mathbf{x} \in \mathbb{R}^n : \max_{i=1,\dots,n} x_i \ge 1\}$
 - { $\mathbf{x} \in \mathbb{R}^n : \min_{i=1,\dots,n} x_i \leq 1$ }
- 2. Let $C_1 = \{(x, y) : x^2 + y^2 = 1\}$ and $C_2 = \{(x, y) : (x 2)^2 + y^2 \le 1\}.$
 - Show that C_1 and C_2 are closed convex subsets of \mathbb{R}^2 .
 - Are C_1 and C_2 strictly separable? Are C_1 and C_2 strongly separable?
 - Draw the convex hull of $C_1 \cup C2$.

3. Is it true that the union of two convex sets is a convex set? If not, find a counterexample.

- 4. Let $S_1 = \{(x, y) : y \leq 0\}$ and $S_2 = \{(x, y) : y \geq \frac{1}{x}, x \neq 0\}$. Find a hyperplane which separates S_1 and S_2 . Is this a strictly separating hyperplane?
- 5. Find all the supporting hyperplanes of the set $C = \{(x, y) : x \ge 0\} \cap \{(x, y) : y \ge 0\} \cap \{(x, y) : x^2 + y^2 = 1\}.$