Numerical Optimization Convex Functions

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

x

Convex functions

Definition

Let $C \subseteq \mathbb{R}^n$ be a convex set. A function $f : C \to \mathbb{R}$ is said to be convex if for any $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $\lambda \in [0, 1]$,

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \leq \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2).$$

• *f* is strictly convex if the above inequality is strict for any $\mathbf{x}_1, \mathbf{x}_2 \in C, \mathbf{x}_1 \neq \mathbf{x}_2$ and $\lambda \in (0, 1)$.

Convex function

Shirish Shevade Numerical Optimization

Concave functions

Let $C \subseteq \mathbb{R}^n$ be a convex set. A function $f : C \to \mathbb{R}$ is said to be

- concave iff -f is convex
- strictly concave iff -f is strictly convex.

Concave

Neither convex nor concave

Neither convex nor concave

Shirish Shevade Numerical Optimization

Examples

f(x) = a^Tx + b is both convex and concave on ℝⁿ.
f(x) = e^{ax} is convex on ℝ, for any a ∈ ℝ.
f(x) = log x is concave on {x ∈ ℝ : x > 0}.
f(x) = x³ is neither convex nor concave on ℝ.
f(x) = |x| is convex on ℝ.

Why convex functions?

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$. Consider the problem,

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in X \dots \dots (1) \end{array}$$

Recall the definition of a global and a local minimum.

- If there exists x^{*} ∈ X such that f(x^{*}) ≤ f(x) for every x ∈ X, then x^{*} is said to be a global minimum of f over X.
- $\bar{\mathbf{x}}$ is said to be a local minimum of f over X if there exists $\delta > 0$ such that $f(\bar{\mathbf{x}}) \le f(\mathbf{x})$ for every $\mathbf{x} \in X \cap B(\bar{\mathbf{x}}, \delta)$.

If f is a convex function and X is a convex set, then every local minimum of (1) is a global minimum.

Convex Programming Problem

Let $C \subseteq \mathbb{R}^n$ be a nonempty convex set and $f : C \to \mathbb{R}$ be a convex function.

Convex Programming Problem (CP):

 $\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in C \end{array}$

Theorem

Every local minimum of a convex programming problem is a global minimum.

Theorem

Every local minimum of a convex programming problem is a global minimum.

Proof.

(I) The theorem is trivially true if C is a singleton set.

(II) Assume that there exists $\mathbf{x}^* \in C$ which is a *local minimum* of f over C.

 \mathbf{x}^* is a local minimum

 $\Rightarrow \exists \delta > 0 \ni f(\mathbf{x}^*) \leq f(\mathbf{x}) \forall \mathbf{x} \in C \cap B(\mathbf{x}^*, \delta).$

Proof. (continued)

Let $S = C \cap B(\mathbf{x}^*, \delta)$. We already have $f(\mathbf{x}^*) < f(\mathbf{x}) \forall \mathbf{x} \in S$... (1). It is enough to show that $f(\mathbf{x}^*) < f(\mathbf{x}) \ \forall \ \mathbf{x} \in C \setminus S$. Let $\mathbf{y} \in S$, $\mathbf{y} \neq \mathbf{x}^*$. Consider any $\mathbf{x} \in C \setminus S$ such that \mathbf{x} lies on the extended line segment $LS[\mathbf{x}^*, \mathbf{v}]$. Since *C* is convex, $\mathbf{y} = \lambda \mathbf{x}^* + (1 - \lambda)\mathbf{x} \in C \ \forall \ \lambda \in (0, 1).$ $f(\mathbf{x}^*) < f(\mathbf{y})$ $= f(\lambda \mathbf{x}^* + (1 - \lambda)\mathbf{x})$ $< \lambda f(\mathbf{x})^* + (1 - \lambda)f(\mathbf{x})$ (since f is convex) $\therefore f(\mathbf{x}^*) < f(\mathbf{x}) \forall \mathbf{x} \in C \backslash S. \dots (2)$

From (1) and (2), \mathbf{x}^* is a global minimum of f over C.

Theorem

The set of all optimal solutions to the convex programming problem is convex.

Proof.

(I) The theorem is true if there is an unique optimal solution. (II) Let $S = \{ \mathbf{z} \in C : f(\mathbf{z}) \le f(\mathbf{x}), \mathbf{x} \in C \}$. We need to show that S is a convex set. Let $\mathbf{x}_1, \mathbf{x}_2 \in S, \mathbf{x}_1 \neq \mathbf{x}_2$. $\therefore f(\mathbf{x}_1) = f(\mathbf{x}_2), f(\mathbf{x}_1) < f(\mathbf{x}), f(\mathbf{x}_2) < f(\mathbf{x}) \ \forall \ \mathbf{x} \in C.$ Since $\mathbf{x}_1, \mathbf{x}_2 \in C$ and *C* is a convex set, $\lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2 \in C \ \forall \ \lambda \in [0, 1].$ Since f is convex, we have, for any $\lambda \in [0, 1]$, $f(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) \leq \lambda f(\mathbf{x}_1) + (1-\lambda)f(\mathbf{x}_2) = f(\mathbf{x}_2)$ This implies that *S* is a convex set.

Epigraph

Let $X \subseteq \mathbb{R}^n$ and $f : X \to \mathbb{R}$ Describe f by its graph, $\{(\mathbf{x}, f(\mathbf{x})) : \mathbf{x} \in X\} \subseteq \mathbb{R}^{n+1}$

Definition

The epigraph of f, epi(f) is a subset of \mathbb{R}^{n+1} and is defined by

 $\{(\mathbf{x}, y) : \mathbf{x} \in X, y \in \mathbb{R}, y \ge f(\mathbf{x})\}\$

Characterization of a convex function

Theorem

Let $C \subseteq \mathbb{R}^n$ be a convex set and $f : C \to \mathbb{R}$. Then f is convex iff epi(f) is a convex set.

Proof.

(I). Assume that f is convex. Let $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2) \in \text{epi}(f)$. Therefore, $y_1 \ge f(\mathbf{x}_1)$ and $y_2 \ge f(\mathbf{x}_2)$. f is a convex function. So, for any $\lambda \in [0, 1]$, we can write,

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \leq \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$$

$$\leq \lambda y_1 + (1 - \lambda)y_2$$

Therefore, we have $(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2, \lambda y_1 + (1 - \lambda)y_2) \in epi(f)$ $\Rightarrow epi(f)$ is a convex set.

Proof (continued)

(II). Assume that epi(f) is a convex set. Let $\mathbf{x}_1, \mathbf{x}_2 \in C$. $\therefore (\mathbf{x}_1, f(\mathbf{x}_1)), (\mathbf{x}_2, f(\mathbf{x}_2)) \in \text{epi}(f)$. $\therefore (\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2, \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)) \in \text{epi}(f)$ for any $\lambda \in [0, 1]$ $\therefore \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2) \ge f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$ for any $\lambda \in [0, 1]$

 \therefore f is convex.

Level set

Let $C \subseteq \mathbb{R}^n$ be a convex set and $f : C \to \mathbb{R}$ be a convex function.

Define the level set of f for a given α as

$$C_{\alpha} = \{ \mathbf{x} \in C : f(\mathbf{x}) \le \alpha, \alpha \in \mathbb{R} \}.$$

Theorem

If f is a convex function, then the level set C_{α} is a convex set.

Proof.

Let
$$\mathbf{x}, \mathbf{y} \in C_{\alpha}$$
.
 $\therefore \mathbf{x}, \mathbf{y} \in C$ and $f(\mathbf{x}) \leq \alpha, f(\mathbf{y}) \leq \alpha$.
Let $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y}$ where $\lambda \in (0, 1)$.
Clearly, $\mathbf{z} \in C$.
Since f is convex, $f(\mathbf{z}) \leq \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y}) \leq \alpha$
 $\therefore \mathbf{z} \in C_{\alpha} \Rightarrow C_{\alpha}$ is convex.

Theorem

Let $C \subseteq \mathbb{R}^n$ be a convex set and $f : C \to \mathbb{R}$ be a differentiable function. Let $g(\mathbf{x}) = \nabla f(\mathbf{x})$. Then f is convex iff

$$f(\mathbf{x}_2) \geq f(\mathbf{x}_1) + g(\mathbf{x}_1)^T (\mathbf{x}_2 - \mathbf{x}_1)$$

for all $\mathbf{x}_1, \mathbf{x}_2 \in C$. Further, f is strictly convex iff the above inequality is strict for all $\mathbf{x}_1, \mathbf{x}_2 \in C, \mathbf{x}_1 \neq \mathbf{x}_2$.

Shirish Shevade Numerical Optimization

Proof.

(I). Assume that f is convex.

$$\therefore f(\lambda \mathbf{x}_2 + (1 - \lambda)\mathbf{x}_1) \le \lambda f(\mathbf{x}_2) + (1 - \lambda)f(\mathbf{x}_1) \ \forall \ \lambda \in [0, 1]$$
That is, $f(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)) \le f(\mathbf{x}_1) + \lambda(f(\mathbf{x}_2) - f(\mathbf{x}_1))$.

$$\therefore \frac{f(\mathbf{x}_1 + \lambda(\mathbf{x}_2 - \mathbf{x}_1)) - f(\mathbf{x}_1)}{\lambda} \le f(\mathbf{x}_2) - f(\mathbf{x}_1)$$
Letting $\lambda \to 0^+$, we get
$$g(\mathbf{x}_1)^T(\mathbf{x}_2 - \mathbf{x}_1) \le f(\mathbf{x}_2) - f(\mathbf{x}_1)$$

Proof.(Continued)

(II). Assume that $f(\mathbf{x}_2) \ge f(\mathbf{x}_1) + g(\mathbf{x}_1)^T(\mathbf{x}_2 - \mathbf{x}_1)$ holds for any $\mathbf{x}_1, \mathbf{x}_2 \in C$. Let $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$ where $\lambda \in [0, 1]$.

$$\begin{array}{rcl} \therefore f(\mathbf{x}_1) & \geq & f(\mathbf{x}) + g(\mathbf{x})^T(\mathbf{x}_1 - \mathbf{x}) & \dots(a) \\ f(\mathbf{x}_2) & \geq & f(\mathbf{x}) + g(\mathbf{x})^T(\mathbf{x}_2 - \mathbf{x}) & \dots(b) \end{array}$$

Multiplying (a) by λ and (b) by $(1 - \lambda)$ and adding, we get,

$$\lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$$

$$\geq f(\mathbf{x}) + \lambda g(\mathbf{x})^T (\mathbf{x}_1 - \mathbf{x}) + (1 - \lambda)g(\mathbf{x})^T (\mathbf{x}_2 - \mathbf{x})$$

$$= f(\mathbf{x}) + \lambda g(\mathbf{x})^T (\mathbf{x}_1 - \mathbf{x}_2) + g(\mathbf{x})^T (\mathbf{x}_2 - \mathbf{x})$$

$$= f(\mathbf{x}) + g(\mathbf{x})^T (\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2 - \mathbf{x})$$

$$= f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2)$$

$$\Rightarrow \text{ f is convex. } \Box$$

Let C ⊆ ℝⁿ and f : C → ℝ be a differentiable convex function on a convex set C. Then, the first order approximation of f at any x₁ ∈ C never *overestimates* f(x₂) for any x₂ ∈ C.

Let C ⊆ ℝ be an open convex set and f : C → ℝ be a differentiable convex function on C.
 Consider x₁, x₂ ∈ C such that x₁ < x₂. We therefore have

$$f(x_1) \ge f(x_2) + f'(x_2)(x_1 - x_2)$$

$$f(x_2) \ge f(x_1) + f'(x_1)(x_2 - x_1)$$

Hence,

$$f'(x_2)(x_2 - x_1) \ge f(x_2) - f(x_1) \ge f'(x_1)(x_2 - x_1).$$

This implies,
 $f'(x_2) \ge f'(x_1) \ \forall \ x_2 > x_1.$

If f is a differentiable convex function of one variable defined on an open interval C, then the derivative of f is non-decreasing.

The converse of this statement is also true.

• Consider the Convex Programming Problem (CP):

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in C \end{array}$$

where f is differentiable. Let $\hat{\mathbf{x}} \in C$. The optimal objective function value of the problem,

min
$$f(\hat{\mathbf{x}}) + g(\hat{\mathbf{x}})^T (\mathbf{x} - \hat{\mathbf{x}})$$

s.t. $\mathbf{x} \in C$

gives a lower bound on the optimal objective function value of **CP**.

• Again, consider the **Convex Programming Problem** (**CP**):

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in C \end{array}$$

where f is differentiable and C is an open convex set.

• Let $\mathbf{x}^* \in C$ such that $g(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) = \mathbf{0}$. Then,

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + g(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*)$$

$$\Rightarrow f(\mathbf{x}) \geq f(\mathbf{x}^*) \forall \mathbf{x} \in C$$

$$\Rightarrow \mathbf{x}^* \quad \text{is a global minimum of } f \text{ over } C.$$

Theorem

Let $f : C \to \mathbb{R}$ be a twice differentiable function on an open convex set $C \subseteq \mathbb{R}^n$. Then f is convex iff its Hessian matrix, $\mathbf{H}(\mathbf{x})$, is positive semi-definite for each $\mathbf{x} \in C$.

Proof.

(I). Let $\mathbf{x}_1, \mathbf{x}_2 \in C$ and $\mathbf{H}(\mathbf{x})$, be positive semi-definite for each $\mathbf{x} \in C$. Let $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2, \ \lambda \in (0, 1)$. Using second order truncated Taylor series, we have,

 $f(\mathbf{x}_2) = f(\mathbf{x}_1) + g(\mathbf{x}_1)^T (\mathbf{x}_2 - \mathbf{x}_1) + \frac{1}{2} (\mathbf{x}_2 - \mathbf{x}_1)^T \mathbf{H}(\mathbf{x}) (\mathbf{x}_2 - \mathbf{x}_1).$ That is, $f(\mathbf{x}_2) \ge f(\mathbf{x}_1) + g(\mathbf{x}_1)^T (\mathbf{x}_2 - \mathbf{x}_1)$ (since H is psd) Hence, f is convex.

Proof. (continued)

(II). Let **H** be *not* positive semi-definite for some $\mathbf{x}_1 \in C$. $\therefore \exists \mathbf{x}_2 \in C \ni (\mathbf{x}_2 - \mathbf{x}_1)^T \mathbf{H}(\mathbf{x}_1)(\mathbf{x}_2 - \mathbf{x}_1) < 0$. Let $\mathbf{x} = \lambda \mathbf{x}_1 + (1 - \lambda) \mathbf{x}_2$, $\lambda \in (0, 1)$. Using second order truncated Taylor series, we have, $f(\mathbf{x}_2) = f(\mathbf{x}_1) + g(\mathbf{x}_1)^T (\mathbf{x}_2 - \mathbf{x}_1) + \frac{1}{2} (\mathbf{x}_2 - \mathbf{x}_1)^T \mathbf{H}(\mathbf{x}) (\mathbf{x}_2 - \mathbf{x}_1)$. Choose **x** sufficiently close to \mathbf{x}_1 so that $(\mathbf{x}_2 - \mathbf{x}_1)^T \mathbf{H}(\mathbf{x}) (\mathbf{x}_2 - \mathbf{x}_1) < 0$. $\therefore f(\mathbf{x}_2) < f(\mathbf{x}_1) + g(\mathbf{x}_1)^T (\mathbf{x}_2 - \mathbf{x}_1)$. This implies that *f* is not convex.

f is strictly convex on *C* if the Hessian matrix $\mathbf{H}(\mathbf{x})$ of *f* is positive definite for all $\mathbf{x} \in C$.

Examples

• Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined as

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

where **A** is a symmetric matrix in \mathbb{R}^n , $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. The Hessian matrix of f is **A** at any $\mathbf{x} \in \mathbb{R}^n$.

- \therefore f is convex iff A is positive semi-definite.
- Let $f(x) = x \log x$ be defined on $C = \{x \in \mathbb{R} : x > 0\}$. $f'(x) = 1 + \log x$ and $f''(x) = \frac{1}{x} > 0 \ \forall x \in C$ So, f(x) is convex.

•
$$f(\mathbf{x}) = \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$$

Or, $f(\mathbf{x}) = \frac{1}{2} (\mathbf{A}\mathbf{x} - \mathbf{b})^T (\mathbf{A}\mathbf{x} - \mathbf{b})$
 $\nabla^2 f(\mathbf{x}) = \mathbf{A}^T \mathbf{A}$ which is positive semi-definite.
 $\therefore f$ is convex.

•
$$f(x) = \log(x)$$
 defined on $C = \{x \in \mathbb{R} : x > 0\}$.
 $f'(x) = \frac{1}{x}$ and $f''(x) = -\frac{1}{x^2} < 0 \ \forall x \in C$.
So, f is concave.

Jensen's inequality

Jensen's inequality

If $f : C \to \mathbb{R}$ is a function on a convex set $C \subseteq \mathbb{R}^n$. Then f is convex iff

$$f(\sum_{i=1}^k \lambda_i \mathbf{x}_i) \leq \sum_{i=1}^k \lambda_i f(\mathbf{x}_i) \dots (\mathrm{JI})$$

where $\mathbf{x}_1, \ldots, \mathbf{x}_k \in C, \lambda_i \geq 0$ and $\sum_i \lambda_i = 1$.

• Useful in deriving many inequalities like AM-GM inequality or Hölder inequality

Proof.

(I) Suppose f is a convex function. Let us prove the inequality by induction on k. If k = 2 the inequality (JI) holds for a convex function.

Shirish Shevade

Numerical Optimization

Proof. (continued)

Let k > 2 and the inequality (JI) holds for any collection of k - 1 points in *C*. Now, consider $f(\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2 + \ldots + \lambda_k \mathbf{x}_k)$ where $\lambda_1, \ldots, \lambda_k \ge 0$ and $\sum_{i=1}^k \lambda_i = 1$. Let $\delta = \sum_{i=1}^{k-1} \lambda_i$. Note that $\delta + \lambda_k = 1$.

$$f(\lambda_{1}\mathbf{x}_{1} + \lambda_{2}\mathbf{x}_{2} + \ldots + \lambda_{k}\mathbf{x}_{k})$$

$$= f(\delta(\frac{\lambda_{1}}{\delta}\mathbf{x}_{1} + \ldots + \frac{\lambda_{k-1}}{\delta}\mathbf{x}_{k-1})) + \lambda_{k}\mathbf{x}_{k})$$

$$\leq \delta f(\frac{\lambda_{1}}{\delta}\mathbf{x}_{1} + \ldots + \frac{\lambda_{k-1}}{\delta}\mathbf{x}_{k-1}) + \lambda_{k}f(\mathbf{x}_{k})$$

$$\leq \delta(\frac{\lambda_{1}}{\delta}f(\mathbf{x}_{1}) + \ldots + \frac{\lambda_{k-1}}{\delta}f(\mathbf{x}_{k-1})) + \lambda_{k}f(\mathbf{x}_{k})$$

$$= \lambda_{1}f(\mathbf{x}_{1}) + \ldots + \lambda_{k}f(\mathbf{x}_{k})$$

(II) The converse is easy to prove.

• Arithmetic-geometric mean inequality can be derived using Jensen's inequality.

Consider the convex function $f(x) = -\log(x)$ defined on $C = \{x \in \mathbb{R} : x > 0\}.$ Let $x_1, x_2, \dots, x_k \in \mathbb{C}.$ Letting $\lambda_1 = \dots = \lambda_k = \frac{1}{k}$ and applying Jensen's inequality, we get

$$egin{array}{rcl} -\log(\sum\limits_{i=1}^k\lambda_ix_i)&\leq& -rac{1}{k}(\sum\limits_{i=1}^k\log(x_i)\ dots&\&\ \log(rac{x_1+\ldots+x_k}{k})&\geq& rac{1}{k}\log(x_1x_2\ldots x_k)\ dots&\&rac{x_1+\ldots+x_k}{k}&\geq& (x_1x_2\ldots x_k)^rac{1}{k} \end{array}$$

Operations that preserve convexity

- If f : ℝⁿ → ℝ is a convex function and α > 0, then, αf is a convex function.
- f is a convex function. Therefore, for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ and $\lambda \in [0, 1]$,

$$f(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) \leq \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2).$$

Multiplying both sides by α gives the result.

Operations that preserve convexity

• Let $f_1, \ldots, f_k : \mathbb{R}^n \to \mathbb{R}$ be convex functions. Then, $f(\mathbf{x}) = \sum_{i=1}^k \alpha_i f_i(\mathbf{x})$ where $\alpha_i > 0 \forall i = 1, \ldots, k$ is a convex function.

Consider two convex functions f_1 and f_2 and let $f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x})$. For any $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ and $\lambda \in [0, 1]$,

$$\begin{aligned} f_1(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) &\leq \lambda f_1(\mathbf{x}_1) + (1-\lambda)f_1(\mathbf{x}_2) \\ f_2(\lambda \mathbf{x}_1 + (1-\lambda)\mathbf{x}_2) &\leq \lambda f_2(\mathbf{x}_1) + (1-\lambda)f_2(\mathbf{x}_2) \end{aligned}$$

Adding the two inequalities, we get that $f_1 + f_2$ is a convex function.

Easy to extend the idea to the general result.

Operations that preserve convexity

• Let $h : \mathbb{R} \to \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$. Consider the function $\psi(x) = h(f(x))$. Under what conditions is ψ convex?

Let *f* and *h* be twice differentiable. Need to find the conditions under which $\psi''(x) \ge 0$.

$$\psi''(x) = h''(f(x))f'(x)^2 + h'(f(x))f''(x)$$

- ψ is convex if *h* is convex and non-decreasing, and *f* is convex,
- ψ is convex if *h* is convex and non-increasing, and *f* is concave.

Theorem

Let $C \subset \mathbb{R}^n$ be a compact convex set and $f : C \to \mathbb{R}$ be a convex function. Then the maximum of f occurs at a boundary point of C.

Proof.

Suppose the maximum exists at a point \mathbf{x}^* which is in the interior of the set *C*. That is, $f(\mathbf{x}^*) \ge f(\mathbf{x}) \forall \mathbf{x} \in C$ and \mathbf{x}^* is in the interior of *C*.

Draw a line through \mathbf{x}^* cutting the boundary of C at \mathbf{x}_1 and \mathbf{x}_2 . We can write $\mathbf{x}^* = \lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2$ for some $\lambda \in (0, 1)$. Since f is convex, $f(\mathbf{x}^*) \le \lambda f(\mathbf{x}_1) + (1 - \lambda)f(\mathbf{x}_2)$. (i) $f(\mathbf{x}_1) < f(\mathbf{x}_2) \Rightarrow f(\mathbf{x}^*) < f(\mathbf{x}_2) \Rightarrow \mathbf{x}^*$ is not a global max. (ii) $f(\mathbf{x}_1) > f(\mathbf{x}_2) \Rightarrow f(\mathbf{x}^*) < f(\mathbf{x}_1) \Rightarrow \mathbf{x}^*$ is not a global max. (iii) $f(\mathbf{x}_1) = f(\mathbf{x}_2) \Rightarrow f(\mathbf{x}^*) \le f(\mathbf{x}_1) = f(\mathbf{x}_2) \Rightarrow$ either $f(\mathbf{x}_1) = f(\mathbf{x}_2) = f(\mathbf{x}^*)$ or \mathbf{x}^* is not a global maximum. \therefore The maximum of f occurs at a boundary point.