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Convex functions
Definition
Let C ⊆ Rn be a convex set. A function f : C → R is said to be
convex if for any x1, x2 ∈ C and λ ∈ [0, 1],

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2).

f is strictly convex if the above inequality is strict for any
x1, x2 ∈ C, x1 6= x2 and λ ∈ (0, 1).
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Concave functions

Let C ⊆ Rn be a convex set. A function f : C → R is said to be
concave iff −f is convex
strictly concave iff −f is strictly convex.
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Examples

f (x) = aTx + b is both convex and concave on Rn.
f (x) = eax is convex on R, for any a ∈ R.
f (x) = log x is concave on {x ∈ R : x > 0}.
f (x) = x3 is neither convex nor concave on R.
f (x) = |x| is convex on R.
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Why convex functions?

Let X ⊆ Rn and f : X → R. Consider the problem,

min f (x)

s.t. x ∈ X . . . . . . (1)

Recall the definition of a global and a local minimum.

If there exists x∗ ∈ X such that f (x∗) ≤ f (x) for every
x ∈ X, then x∗ is said to be a global minimum of f over X.
x̄ is said to be a local minimum of f over X if there exists
δ > 0 such that f (x̄) ≤ f (x) for every x ∈ X ∩ B(x̄, δ).

If f is a convex function and X is a convex set, then every local
minimum of (1) is a global minimum.
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Convex Programming Problem

Let C ⊆ Rn be a nonempty convex set and f : C → R be a
convex function.
Convex Programming Problem (CP):

min f (x)
s.t. x ∈ C

Theorem
Every local minimum of a convex programming problem is a
global minimum.
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Theorem
Every local minimum of a convex programming problem is a
global minimum.

Proof.
(I) The theorem is trivially true if C is a singleton set.

(II) Assume that there exists x∗ ∈ C which is a local minimum
of f over C.
x∗ is a local minimum
⇒ ∃ δ > 0 3 f (x∗) ≤ f (x) ∀ x ∈ C ∩ B(x∗, δ).
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Proof. (continued)
Let S = C ∩ B(x∗, δ).
We already have f (x∗) ≤ f (x) ∀ x ∈ S . . . (1). It is enough to
show that f (x∗) ≤ f (x) ∀ x ∈ C\S. Let y ∈ S, y 6= x∗.
Consider any x ∈ C\S such that x lies on the extended line
segment LS[x∗, y].
Since C is convex, y = λx∗ + (1− λ)x ∈ C ∀ λ ∈ (0, 1).

f (x∗) ≤ f (y)

= f (λx∗ + (1− λ)x)

≤ λf (x)∗ + (1− λ)f (x) (since f is convex)
··· f (x∗) ≤ f (x) ∀ x ∈ C\S. . . . (2)

From (1) and (2), x∗ is a global minimum of f over C.
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Theorem
The set of all optimal solutions to the convex programming
problem is convex.

Proof.
(I) The theorem is true if there is an unique optimal solution.
(II) Let S = {z ∈ C : f (z) ≤ f (x), x ∈ C}. We need to show
that S is a convex set.
Let x1, x2 ∈ S, x1 6= x2.
··· f (x1) = f (x2), f (x1) ≤ f (x), f (x2) ≤ f (x) ∀ x ∈ C.
Since x1, x2 ∈ C and C is a convex set,
λx1 + (1− λ)x2 ∈ C ∀ λ ∈ [0, 1].
Since f is convex, we have, for any λ ∈ [0, 1],
f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2) = f (x2)
This implies that S is a convex set.
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Epigraph

Let X ⊆ Rn and f : X → R
Describe f by its graph, {(x, f (x)) : x ∈ X} ⊆ Rn+1

Definition
The epigraph of f , epi(f ) is a subset of Rn+1 and is defined by

{(x, y) : x ∈ X, y ∈ R, y ≥ f (x)}
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Characterization of a convex function

Theorem
Let C ⊆ Rn be a convex set and f : C → R. Then f is convex iff
epi(f ) is a convex set.

Proof.
(I). Assume that f is convex. Let (x1, y1), (x2, y2) ∈ epi(f ).
Therefore, y1 ≥ f (x1) and y2 ≥ f (x2).
f is a convex function. So, for any λ ∈ [0, 1], we can write,

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

≤ λy1 + (1− λ)y2

Therefore, we have (λx1 + (1− λ)x2, λy1 + (1− λ)y2) ∈ epi(f )
⇒ epi(f ) is a convex set.
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Proof (continued)
(II). Assume that epi(f ) is a convex set. Let x1, x2 ∈ C.
··· (x1, f (x1)), (x2, f (x2)) ∈ epi(f ).
··· (λx1 + (1− λ)x2, λf (x1) + (1− λ)f (x2)) ∈ epi(f ) for any
λ ∈ [0, 1]
··· λf (x1)+ (1−λ)f (x2) ≥ f (λx1 +(1−λ)x2) for any λ ∈ [0, 1]
··· f is convex. �
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Level set

Let C ⊆ Rn be a convex set and f : C → R be a convex
function.
Define the level set of f for a given α as
Cα = {x ∈ C : f (x) ≤ α, α ∈ R}.

Theorem
If f is a convex function, then the level set Cα is a convex set.

Proof.
Let x, y ∈ Cα.
··· x, y ∈ C and f (x) ≤ α, f (y) ≤ α.
Let z = λx + (1− λ)y where λ ∈ (0, 1).
Clearly, z ∈ C.
Since f is convex, f (z) ≤ λf (x) + (1− λ)f (y) ≤ α.
··· z ∈ Cα ⇒ Cα is convex.
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Theorem
Let C ⊆ Rn be a convex set and f : C → R be a differentiable
function. Let g(x) = ∇f (x). Then f is convex iff

f (x2) ≥ f (x1) + g(x1)
T(x2 − x1)

for all x1, x2 ∈ C. Further, f is strictly convex iff the above
inequality is strict for all x1, x2 ∈ C, x1 6= x2.
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Proof.
(I). Assume that f is convex.
··· f (λx2 + (1− λ)x1) ≤ λf (x2) + (1− λ)f (x1) ∀ λ ∈ [0, 1]
That is, f (x1 + λ(x2 − x1)) ≤ f (x1) + λ(f (x2)− f (x1)).

··· f (x1+λ(x2−x1))−f (x1)
λ

≤ f (x2)− f (x1).
Letting λ→ 0+, we get

g(x1)
T(x2 − x1) ≤ f (x2)− f (x1)
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Proof.(Continued)

(II). Assume that f (x2) ≥ f (x1) + g(x1)
T(x2 − x1) holds for any

x1, x2 ∈ C. Let x = λx1 + (1− λ)x2 where λ ∈ [0, 1].

··· f (x1) ≥ f (x) + g(x)T(x1 − x) . . . (a)

f (x2) ≥ f (x) + g(x)T(x2 − x) . . . (b)

Multiplying (a) by λ and (b) by (1− λ) and adding, we get,

λf (x1) + (1− λ)f (x2)

≥ f (x) + λg(x)T(x1 − x) + (1− λ)g(x)T(x2 − x)

= f (x) + λg(x)T(x1 − x2) + g(x)T(x2 − x)

= f (x) + g(x)T(λx1 + (1− λ)x2 − x)

= f (λx1 + (1− λ)x2)

⇒ f is convex. �
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Let C ⊆ Rn and f : C → R be a differentiable convex
function on a convex set C. Then, the first order
approximation of f at any x1 ∈ C never overestimates
f (x2) for any x2 ∈ C.
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Let C ⊆ R be an open convex set and f : C → R be a
differentiable convex function on C.
Consider x1, x2 ∈ C such that x1 < x2. We therefore have

f (x1) ≥ f (x2) + f ′(x2)(x1 − x2)

f (x2) ≥ f (x1) + f ′(x1)(x2 − x1)

Hence,
f ′(x2)(x2 − x1) ≥ f (x2)− f (x1) ≥ f ′(x1)(x2 − x1).
This implies,
f ′(x2) ≥ f ′(x1) ∀ x2 > x1.

If f is a differentiable convex function of one variable defined
on an open interval C, then the derivative of f is non-decreasing.

The converse of this statement is also true.
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Consider the Convex Programming Problem (CP):

min f (x)
s.t. x ∈ C

where f is differentiable.
Let x̂ ∈ C.
The optimal objective function value of the problem,

min f (x̂) + g(x̂)T(x− x̂)

s.t. x ∈ C

gives a lower bound on the optimal objective function
value of CP.
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Again, consider the Convex Programming Problem
(CP):

min f (x)
s.t. x ∈ C

where f is differentiable and C is an open convex set.

Let x∗ ∈ C such that g(x∗) = ∇f (x∗) = 0.
Then,

f (x) ≥ f (x∗) + g(x∗)T(x− x∗)
⇒ f (x) ≥ f (x∗) ∀ x ∈ C

⇒ x∗ is a global minimum of f over C.

Shirish Shevade Numerical Optimization



Theorem
Let f : C → R be a twice differentiable function on an open
convex set C ⊆ Rn. Then f is convex iff its Hessian matrix,
H(x), is positive semi-definite for each x ∈ C.

Proof.
(I). Let x1, x2 ∈ C and H(x), be positive semi-definite for each
x ∈ C.
Let x = λx1 + (1− λ)x2, λ ∈ (0, 1).
Using second order truncated Taylor series, we have,
f (x2) = f (x1) + g(x1)

T(x2 − x1) + 1
2(x2 − x1)

TH(x)(x2 − x1).
That is, f (x2) ≥ f (x1) + g(x1)

T(x2 − x1) (since H is psd)
Hence, f is convex.

Shirish Shevade Numerical Optimization



Proof. (continued)
(II). Let H be not positive semi-definite for some x1 ∈ C.
··· ∃ x2 ∈ C 3 (x2 − x1)

TH(x1)(x2 − x1) < 0.
Let x = λx1 + (1− λ)x2, λ ∈ (0, 1).
Using second order truncated Taylor series, we have,
f (x2) = f (x1) + g(x1)

T(x2 − x1) + 1
2(x2 − x1)

TH(x)(x2 − x1).
Choose x sufficiently close to x1 so that
(x2 − x1)

TH(x)(x2 − x1) < 0.
··· f (x2) < f (x1) + g(x1)

T(x2 − x1).
This implies that f is not convex.

�

f is strictly convex on C if the Hessian matrix H(x) of f is
positive definite for all x ∈ C.
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Examples
Let f : Rn → R be defined as

f (x) =
1
2

xTAx + bTx + c

where A is a symmetric matrix in Rn, b ∈ Rn and c ∈ R.
The Hessian matrix of f is A at any x ∈ Rn.
··· f is convex iff A is positive semi-definite.
Let f (x) = x log x be defined on C = {x ∈ R : x > 0}.
f ′(x) = 1 + log x and f ′′(x) = 1

x > 0 ∀ x ∈ C
So, f (x) is convex.
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f (x) = 1
2‖Ax− b‖2

Or, f (x) = 1
2(Ax− b)T(Ax− b)

∇2f (x) = ATA which is positive semi-definite.
··· f is convex.
f (x) = log(x) defined on C = {x ∈ R : x > 0}.
f ′(x) = 1

x and f ′′(x) = − 1
x2 < 0 ∀ x ∈ C.

So, f is concave.
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Jensen’s inequality

Jensen’s inequality
If f : C → R is a function on a convex set C ⊆ Rn. Then f is
convex iff

f (
k∑

i=1

λixi) ≤
k∑

i=1

λif (xi) . . . (JI)

where x1, . . . , xk ∈ C, λi ≥ 0 and
∑

i λi = 1.

Useful in deriving many inequalities like AM-GM
inequality or Hölder inequality

Proof.
(I) Suppose f is a convex function.
Let us prove the inequality by induction on k.
If k = 2 the inequality (JI) holds for a convex function.
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Proof. (continued)
Let k > 2 and the inequality (JI) holds for any collection of
k − 1 points in C.
Now, consider f (λ1x1 + λ2x2 + . . .+ λkxk) where
λ1, . . . , λk ≥ 0 and

∑k
i=1 λi = 1.

Let δ =
∑k−1

i=1 λi. Note that δ + λk = 1.

f (λ1x1 + λ2x2 + . . .+ λkxk)

= f (δ(
λ1

δ
x1 + . . .

λk−1

δ
xk−1)) + λkxk)

≤ δf (
λ1

δ
x1 + . . .+

λk−1

δ
xk−1) + λkf (xk)

≤ δ(
λ1

δ
f (x1) + . . .+

λk−1

δ
f (xk−1)) + λkf (xk)

= λ1f (x1) + . . .+ λkf (xk)

(II) The converse is easy to prove. �
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Arithmetic-geometric mean inequality can be derived
using Jensen’s inequality.

Consider the convex function f (x) = − log(x) defined on
C = {x ∈ R : x > 0}.
Let x1, x2, . . . , xk ∈C.
Letting λ1 = . . . = λk = 1

k and applying Jensen’s inequality ,
we get

− log(
k∑

i=1

λixi) ≤ −1
k
(

k∑
i=1

log(xi)

··· log(
x1 + . . .+ xk

k
) ≥ 1

k
log(x1x2 . . . xk)

···
x1 + . . .+ xk

k
≥ (x1x2 . . . xk)

1
k
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Operations that preserve convexity

If f : Rn → R is a convex function and α > 0, then, αf is a
convex function.

f is a convex function. Therefore, for any x1, x2 ∈ Rn and
λ ∈ [0, 1],

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2).

Multiplying both sides by α gives the result.
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Operations that preserve convexity

Let f1, . . . , fk : Rn → R be convex functions. Then,
f (x) =

∑k
i=1 αifi(x) where αi > 0 ∀ i = 1, . . . , k is a

convex function.

Consider two convex functions f1 and f2 and let
f (x) = f1(x) + f2(x).
For any x1, x2 ∈ Rn and λ ∈ [0, 1],

f1(λx1 + (1− λ)x2) ≤ λf1(x1) + (1− λ)f1(x2)

f2(λx1 + (1− λ)x2) ≤ λf2(x1) + (1− λ)f2(x2)

Adding the two inequalities, we get that f1 + f2 is a convex
function.
Easy to extend the idea to the general result.
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Operations that preserve convexity

Let h : R → R and f : R → R. Consider the function
ψ(x) = h(f (x)). Under what conditions is ψ convex?

Let f and h be twice differentiable.
Need to find the conditions under which ψ′′(x) ≥ 0.

ψ′′(x) = h′′(f (x))f ′(x)2 + h′(f (x))f ′′(x)

ψ is convex if h is convex and non-decreasing, and f is
convex,
ψ is convex if h is convex and non-increasing, and f is
concave.
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Theorem
Let C ⊂ Rn be a compact convex set and f : C → R be a convex
function. Then the maximum of f occurs at a boundary point of
C.
Proof.
Suppose the maximum exists at a point x∗ which is in the
interior of the set C. That is, f (x∗) ≥ f (x) ∀ x ∈ C and x∗ is in
the interior of C.
Draw a line through x∗ cutting the boundary of C at x1 and x2.
We can write x∗ = λx1 + (1− λ)x2 for some λ ∈ (0, 1).
Since f is convex, f (x∗) ≤ λf (x1) + (1− λ)f (x2).
(i) f (x1) < f (x2) ⇒ f (x∗) < f (x2) ⇒ x∗ is not a global max.
(ii) f (x1) > f (x2) ⇒ f (x∗) < f (x1) ⇒ x∗ is not a global max.
(iii) f (x1) = f (x2) ⇒ f (x∗) ≤ f (x1) = f (x2) ⇒ either
f (x1) = f (x2) = f (x∗) or x∗ is not a global maximum.
··· The maximum of f occurs at a boundary point.
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