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Unconstrained Minimization

Let f : Rn → R. Consider the optimization problem:

min f (x)
s.t. x ∈ Rn

Assumption: f is bounded below.

Definition
x∗ ∈ Rn is said to be a local minimum of f if there is a δ > 0
such that f (x∗) ≤ f (x) ∀ x ∈ B(x∗, δ).
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The function value does not decrease in the local
neighbourhood of a local minimum.
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Definition
Let x̄ ∈ Rn. If there exists a direction d ∈ Rn and δ > 0 such
that f (x̄ + αd) < f (x̄) for all α ∈ (0, δ), then d is said to be a
descent direction of f at x̄.

Result
Let f ∈ C1 and x̄ ∈ Rn. Let g(x̄) = ∇f (x̄). If g(x̄)Td < 0 then,
d is a descent direction of f at x̄.

Proof.
Given g(x̄)Td < 0. Now, f ∈ C1 ⇒ g ∈ C0.
∴ ∃ δ > 0 3 g(x)Td < 0 ∀ x ∈ LS(x̄, x̄ + δd).
Choose any α ∈ (0, δ). Using first order truncated Taylor series,

f (x̄ + αd) = f (x̄) + αg(x)Td where x ∈ LS(x̄, x̄ + αd)

∴ f (x̄ + αd) < f (x̄) ∀ α ∈ (0, δ)

⇒ d is a descent direction of f at x̄
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First Order Necessary Conditions (Unconstrained
Minimization)

Let f : Rn → R, f ∈ C1. If x∗ is a local minimum of f , then
g(x∗) = 0.

Proof.
Let x∗ be a local minimum of f and g(x∗) 6= 0.
Choose d = −g(x∗).

∴ g(x∗)Td = −g(x∗)Tg(x∗) < 0
g(x∗)Td < 0 ⇒ d is a descent direction of f at x∗

⇒ x∗ is not a local minimum, a contradiction.

Therefore, g(x∗) = 0.

Provides a stopping condition for an optimization algorithm
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Example:

Consider the problem

min f (x)
∆
= x1 exp(−x2

1 − x2
2)

g(x) =

(
exp(−x2

1 − x2
2)(1− 2x2

1)
exp(−x2

1 − x2
2)(−2x1x2)

)
.

g(x) = 0 at ( 1√
2
, 0)T and (− 1√

2
, 0)T .
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The function has a local minimum at (− 1√
2
, 0)T and a local

maximum at ( 1√
2
, 0)T
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Consider the problem

min f (x)
∆
= x1 exp(−x2

1 − x2
2)

g(x) =

(
exp(−x2

1 − x2
2)(1− 2x2

1)
exp(−x2

1 − x2
2)(−2x1x2)

)
.

g(x) = 0 at ( 1√
2
, 0)T and (− 1√

2
, 0)T .

If g(x∗) = 0, then x∗ is a stationary point.
Need higher order derivatives to confirm that a stationary
point is a local minimum
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Second Order Necessary Conditions

Let f : Rn → R, f ∈ C2. If x∗ is a local minimum of f , then
g(x∗) = 0 and H(x∗) is positive semi-definite.

Proof.
Let x∗ be a local minimum of f . From the first order necessary
condition, g(x∗) = 0.
Assume H(x∗) is not positive semi-definite. So, ∃ d such that
dTH(x∗)d < 0. Since H is continuous near x∗, ∃ δ > 0 such
that dTH(x∗ + αd)d < 0 ∀ α ∈ (0, δ).
Using second order truncated Taylor series around x∗, we have
for all α ∈ (0, δ),

f (x∗ + αd) = f (x∗) + αg(x∗)Td +
1
2
α2dTH(x̄)d

where x̄ ∈ LS(x∗, x∗ + αd)

⇒ f (x∗ + αd) < f (x∗)
∴ x∗ is not a local minimum, a contradiction.
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Second Order Sufficient Conditions
Let f : Rn → R, f ∈ C2. If g(x∗) = 0 and H(x∗) is positive
definite, then x∗ is a strict local minimum of f .

Proof.
Since H is continuous and positive definite near x∗, ∃ δ > 0
such that H(x) is positive definite for all x ∈ B(x∗, δ).
Choose some x ∈ B(x∗, δ). Using second order truncated Taylor
series,

f (x) = f (x∗) + g(x∗)T(x− x∗) +
1
2
(x− x∗)TH(x̄)(x− x∗)

where x̄ ∈ LS(x, x∗).

Since (x− x∗)TH(x̄)(x− x∗) > 0 ∀ x ∈ B(x∗, δ),

f (x) > f (x∗) ∀ x ∈ B(x∗, δ).

This implies that x∗ is a strict local minimum.
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Example:
Consider the problem

min f (x)
∆
= x1 exp(−x2

1 − x2
2)

g(x) =

(
exp(−x2

1 − x2
2)(1− 2x2

1)
exp(−x2

1 − x2
2)(−2x1x2)

)
.

g(x) = 0 at x∗1
T = ( 1√

2
, 0)T and x∗2

T = (− 1√
2
, 0)T .

H(x∗2) =

(
2
√

2 exp(−1
2) 0

0
√

2 exp(−1
2)

)
is positive

definite ⇒ x∗2 is a strict local minimum

H(x∗1) =

(
−2
√

2 exp(−1
2) 0

0 −
√

2 exp(−1
2)

)
is negative

definite ⇒ x∗1 is a strict local maximum
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Example:
Consider the problem

min f (x)
∆
= (x2 − x2

1)
2 + x5

1

g(x) =

(
5x4

1 − 4x1(x2 − x2
1)

2(x2 − x2
1)

)
.

Stationary Point: (0, 0)T

Hessian matrix at (0, 0)T :(
0 0
0 2

)
Hessian is positive semi-definite at (0, 0)T ; (0, 0)T is
neither a local minimum nor a local maximum of f (x).
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Example:

Consider the problem

min f (x)
∆
= x2

1 + exp(x1 + x2)

g(x) =

(
2x1 + exp(x1 + x2)

exp(x1 + x2)

)
.

Need an iterative method to solve g(x) = 0 .
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An iterative optimization algorithm generates a sequence
{xk}k≥0, which converges to a local minimum.

Unconstrained Minimization Algorithm

(1) Initialize x0, k := 0.
(2) while stopping condition is not satisfied at xk

(a) Find xk+1 such that f (xk+1) < f (xk).
(b) k := k + 1

endwhile
Output : x∗ = xk, a local minimum of f (x).
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Unconstrained Minimization Algorithm

(1) Initialize x0, k := 0.
(2) while stopping condition is not satisfied at xk

(a) Find xk+1 such that f (xk+1) < f (xk).
(b) k := k + 1

endwhile
Output : x∗ = xk, a local minimum of f (x).

How to find xk+1 in Step 2(a) of the algorithm?
Which stopping condition can be used?
Does the algorithm converge? If yes, how fast does it
converge?
Does the convergence and its speed depend on x0?
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Stopping Conditions for a minimization problem:

‖g(xk)‖ = 0 and H(xk) is positive semi-definite

Practical Stopping conditions

Assumption: There are no stationary points

‖g(xk)‖ ≤ ε

‖g(xk)‖ ≤ ε(1 + |f (xk)|)

f (xk)− f (xk+1)

|f (xk)|
≤ ε
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Speed of Convergence

Assume that an optimization algorithm generates a
sequence {xk}, which converges to x∗.
How fast does the sequence converge to x∗?

Definition
The sequence {xk} converges to x∗ with order p if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p = β, β < ∞

Asymptotically, ‖xk+1 − x∗‖ = β‖xk − x∗‖p

Higher the value of p, faster is the convergence.
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(1) p = 1, 0 < β < 1 (Linear Convergence)
Some Examples:

β = .1, ‖x0 − x∗‖ = .1
Norms of ‖xk − x∗‖ : 10−1, 10−2, 10−3, 10−4, . . .
β = .9, ‖x0 − x∗‖ = .1
Norms of ‖xk − x∗‖ : 10−1, .09, .081, .0729, . . .

(2) p = 2, β > 0 (Quadratic Convergence)
Example:

β = 1, ‖x0 − x∗‖ = .1
Norms of ‖xk − x∗‖ : 10−1, 10−2, 10−4, 10−8, . . .

(3) Suppose an algorithm generates a convergent sequence
{xk} such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0 and lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2 = ∞

then this convergence is called superlinear convergence
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