Numerical Optimization Unconstrained Optimization

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Unconstrained Minimization

Let $f : \mathbb{R}^n \to \mathbb{R}$. Consider the optimization problem:

min $f(x)$ s.t. $\mathbf{x} \in \mathbb{R}^n$

Assumption: *f is bounded below*.

Definition

 $x^* \in \mathbb{R}^n$ is said to be a local minimum of *f* if there is a $\delta > 0$ such that $f(x^*) \leq f(x) \quad \forall x \in B(x^*, \delta)$.

Surface Plot : $f(x) = x_1^2 + x_2^2$

Surface Plot : $f(x) = x_1 \exp(-x_1^2 - x_2^2)$

Contour Plot : $f(x) = x_1 \exp(-x_1^2 - x_2^2)$

The function value *does not decrease* in the local neighbourhood of a local minimum.

Definition

Let $\bar{x} \in \mathbb{R}^n$. If there exists a direction $d \in \mathbb{R}^n$ and $\delta > 0$ such that $f(\bar{x} + \alpha d) < f(\bar{x})$ for all $\alpha \in (0, \delta)$, then *d* is said to be a descent direction of f at \bar{x} .

Result

Let $f \in \mathcal{C}^1$ and $\bar{\mathbf{x}} \in \mathbb{R}^n$. Let $\mathbf{g}(\bar{\mathbf{x}}) = \nabla f(\bar{\mathbf{x}})$. If $\mathbf{g}(\bar{\mathbf{x}})^T \mathbf{d} < 0$ then, *d* is a descent direction of *f* at \bar{x} .

Proof.

Given $g(\bar{x})^T d < 0$. Now, $f \in C^1 \Rightarrow g \in C^0$. $\therefore \exists \delta > 0 \; \ni \bm{g}(\bm{x})^T \bm{d} < 0 \; \forall \; \bm{x} \in LS(\bar{\bm{x}}, \bar{\bm{x}} + \delta \bm{d}).$ Choose any $\alpha \in (0, \delta)$. Using first order truncated Taylor series,

 $f(\bar{x} + \alpha d) = f(\bar{x}) + \alpha g(x)^T d$ where $x \in LS(\bar{x}, \bar{x} + \alpha d)$ ∴ $f(\bar{x} + \alpha d)$ < $f(\bar{x}) \forall \alpha \in (0, \delta)$ \Rightarrow *d* is a descent direction of f at \bar{x}

First Order Necessary Conditions (Unconstrained Minimization)

Let $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^1$. If \mathbf{x}^* is a local minimum of f, then $g(x^*)=0.$

Proof.

Let x^* be a local minimum of f and $g(x^*) \neq 0$. Choose $d = -g(x^*)$.

$$
\therefore g(x^*)^T d = -g(x^*)^T g(x^*) < 0
$$

$$
g(x^*)^T d < 0 \Rightarrow d \text{ is a descent direction of } f \text{ at } x^*
$$

$$
\Rightarrow x^* \text{ is not a local minimum, a contradiction.}
$$

Therefore, $g(x^*) = 0$.

Provides a stopping condition for an optimization algorithm

• Consider the problem

$$
\min f(\mathbf{x}) \stackrel{\Delta}{=} x_1 \exp(-x_1^2 - x_2^2)
$$

.

\bullet $g(x) = \begin{pmatrix} \exp(-x_1^2 - x_2^2)(1 - 2x_1^2) \\ \exp(-x_1^2 - x_2^2)(2x_1^2 - x_1^2) \end{pmatrix}$ \setminus $\exp(-x_1^2 - x_2^2)(-2x_1x_2)$ $g(x) = 0$ at $\left(\frac{1}{\sqrt{2}}\right)$ $(\frac{1}{2},0)^T$ and $(-\frac{1}{\sqrt{2}})$ \overline{z} , 0)^T.

The function has a local minimum at $\left(-\frac{1}{\sqrt{2}}\right)$ $(\frac{1}{2}, 0)^T$ and a local maximum at $\left(\frac{1}{\sqrt{2}}\right)$ $\overline{2}$, 0)^T

• Consider the problem

 \bullet

$$
\min f(\mathbf{x}) \stackrel{\Delta}{=} x_1 \exp(-x_1^2 - x_2^2)
$$

$$
\boldsymbol{g}(\boldsymbol{x}) = \begin{pmatrix} \exp(-x_1^2 - x_2^2)(1 - 2x_1^2) \\ \exp(-x_1^2 - x_2^2)(-2x_1x_2) \end{pmatrix}.
$$

- $g(x) = 0$ at $\left(\frac{1}{\sqrt{2}}\right)$ $(\frac{1}{2},0)^T$ and $(-\frac{1}{\sqrt{2}})$ \overline{z} , 0)^T.
- If $g(x^*) = 0$, then x^* is a *stationary point*.
- Need higher order derivatives to confirm that a stationary point is a local minimum

Second Order Necessary Conditions

Let $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^2$. If \mathbf{x}^* is a local minimum of f, then $g(x^*) = 0$ and $H(x^*)$ is positive semi-definite.

Proof.

Let x^* be a local minimum of f . From the first order necessary condition, $g(x^*) = 0$.

Assume $H(x^*)$ is not positive semi-definite. So, $\exists d$ such that $d^TH(x[*])d < 0$. Since *H* is continuous near x^* , $\exists \delta > 0$ such that $d^TH(x^* + \alpha d)d < 0 \ \forall \alpha \in (0, \delta)$.

Using second order truncated Taylor series around *x* ∗ , we have for all $\alpha \in (0, \delta)$,

$$
f(x^* + \alpha d) = f(x^*) + \alpha g(x^*)^T d + \frac{1}{2} \alpha^2 d^T H(\bar{x}) d
$$

where $\bar{x} \in LS(x^*, x^* + \alpha d)$

$$
\Rightarrow f(\pmb{x}^* + \alpha \pmb{d}) \quad < \quad f(\pmb{x}^*)
$$

 \therefore **x**^{*} is not a local minimum, a contradiction.

Second Order Sufficient Conditions

Let $f: \mathbb{R}^n \to \mathbb{R}, f \in \mathcal{C}^2$. If $g(x^*) = 0$ and $H(x^*)$ is positive definite, then x^* is a strict local minimum of f .

Proof.

Since *H* is continuous and positive definite near x^* , $\exists \delta > 0$ such that $H(x)$ is positive definite for all $x \in B(x^*, \delta)$. Choose some $x \in B(x^*, \delta)$. Using second order truncated Taylor series,

$$
f(x) = f(x^*) + g(x^*)^T(x - x^*) + \frac{1}{2}(x - x^*)^T H(\bar{x})(x - x^*)
$$

where $\bar{x} \in LS(x, x^*)$.

Since
$$
(x - x^*)^T H(\bar{x})(x - x^*) > 0 \ \forall \ x \in B(x^*, \delta),
$$

 $f(x) > f(x^*) \ \forall \ x \in B(x^*, \delta).$

This implies that x^* is a strict local minimum.

Consider the problem

$$
\min f(\mathbf{x}) \stackrel{\Delta}{=} x_1 \exp(-x_1^2 - x_2^2)
$$

$$
\mathbf{g}(\mathbf{x}) = \begin{pmatrix} \exp(-x_1^2 - x_2^2)(1 - 2x_1^2) \\ \exp(-x_1^2 - x_2^2)(-2x_1x_2) \end{pmatrix}.
$$

\n• $\mathbf{g}(\mathbf{x}) = \mathbf{0}$ at $\mathbf{x}_1^{*T} = (\frac{1}{\sqrt{2}}, 0)^T$ and $\mathbf{x}_2^{*T} = (-\frac{1}{\sqrt{2}}, 0)^T$.
\n• $\mathbf{H}(\mathbf{x}_2^*) = \begin{pmatrix} 2\sqrt{2}\exp(-\frac{1}{2}) & 0 \\ 0 & \sqrt{2}\exp(-\frac{1}{2}) \end{pmatrix}$ is positive definite \Rightarrow \mathbf{x}_2^* is a strict local minimum
\n• $\mathbf{H}(\mathbf{x}_1^*) = \begin{pmatrix} -2\sqrt{2}\exp(-\frac{1}{2}) & 0 \\ 0 & -\sqrt{2}\exp(-\frac{1}{2}) \end{pmatrix}$ is negative definite \Rightarrow \mathbf{x}_1^* is a strict local maximum

• Consider the problem

$$
\min f(x) \stackrel{\Delta}{=} (x_2 - x_1^2)^2 + x_1^5
$$

•
$$
g(x) = \begin{pmatrix} 5x_1^4 - 4x_1(x_2 - x_1^2) \\ 2(x_2 - x_1^2) \end{pmatrix}
$$
.

- Stationary Point: (0, 0) *T*
- Hessian matrix at $(0,0)^T$:

$$
\left(\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array}\right)
$$

Hessian is positive semi-definite at $(0,0)^T$; $(0,0)^T$ is neither a local minimum nor a local maximum of $f(\mathbf{x})$.

Consider the problem

$$
\min f(\mathbf{x}) \stackrel{\Delta}{=} x_1^2 + \exp(x_1 + x_2)
$$

\bullet

$$
\bm{g}(\bm{x}) = \left(\begin{array}{c} 2x_1 + \exp(x_1 + x_2) \\ \exp(x_1 + x_2) \end{array} \right).
$$

• Need an iterative method to solve $g(x) = 0$.

• An iterative optimization algorithm generates a sequence ${x^k}_{k \geq 0}$, which converges to a local minimum.

Unconstrained Minimization Algorithm

- (1) Initialize $x^0, k := 0$.
- (2) while *stopping condition is not satisfied at* x^k (a) Find x^{k+1} such that $f(x^{k+1}) < f(x^k)$. (b) $k := k + 1$

endwhile

Output : $x^* = x^k$, a local minimum of $f(x)$.

Unconstrained Minimization Algorithm

(1) Initialize
$$
x^0
$$
, $k := 0$.

(2) while *stopping condition is not satisfied at* x^k

(a) Find x^{k+1} such that $f(x^{k+1}) < f(x^k)$.

$$
(b) k := k + 1
$$

endwhile

Output : $x^* = x^k$, a local minimum of $f(x)$.

- How to find x^{k+1} in Step 2(a) of the algorithm?
- Which *stopping condition* can be used?
- Does the algorithm converge? If yes, how fast does it converge?
- Does the convergence and its speed depend on x^0 ?

Stopping Conditions for a minimization problem:

 $\|\mathbf{g}(\mathbf{x}^k)\| = 0$ and $\mathbf{H}(\mathbf{x}^k)$ is positive semi-definite

Practical Stopping conditions

Assumption: There are no *stationary* points

 \bullet

 \bullet

 \bullet

$$
\|\bm{g}(\bm{x}^k)\| \leq \epsilon
$$

$$
\|\mathbf{g}(\mathbf{x}^k)\| \le \epsilon (1 + |f(\mathbf{x}^k)|)
$$

$$
\frac{f(\mathbf{x}^k) - f(\mathbf{x}^{k+1})}{|f(\mathbf{x}^k)|} \le \epsilon
$$

Speed of Convergence

- Assume that an optimization algorithm generates a sequence $\{x^k\}$, which converges to x^* .
- How *fast* does the sequence converge to x^* ?

Definition

The sequence $\{x^k\}$ converges to x^* with order p if

$$
\lim_{k\to\infty}\frac{\|\mathbf{x}^{k+1}-\mathbf{x}^*\|}{\|\mathbf{x}^k-\mathbf{x}^*\|^p}=\beta,\ \ \beta<\infty
$$

- Asymptotically, $\|\mathbf{x}^{k+1} \mathbf{x}^*\| = \beta \|\mathbf{x}^k \mathbf{x}^*\|^p$
- \bullet Higher the value of p , faster is the convergence.

(1) $p = 1, 0 < \beta < 1$ (Linear Convergence) Some Examples:

•
$$
\beta = .1, ||x^0 - x^*|| = .1
$$

Norms of $||x^k - x^*|| : 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, ...$
• $\beta = .9, ||x^0 - x^*|| = .1$
Norms of $||x^k - x^*|| : 10^{-1}, .09, .081, .0729, ...$

(2) $p = 2, \beta > 0$ (Quadratic Convergence) Example:

•
$$
\beta = 1, ||x^0 - x^*|| = .1
$$

Norms of $||x^k - x^*|| : 10^{-1}, 10^{-2}, 10^{-4}, 10^{-8}, ...$

(3) Suppose an algorithm generates a convergent sequence ${x^k}$ such that

$$
\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} = 0 \text{ and } \lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|^2} = \infty
$$

then this convergence is called superlinear convergence