Numerical Optimization Unconstrained Optimization

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Unconstrained Minimization

Let $f : \mathbb{R}^n \to \mathbb{R}$. Consider the optimization problem:

 $\begin{array}{ll} \min \quad f(\boldsymbol{x}) \\ \text{s.t.} \quad \boldsymbol{x} \in \mathbb{R}^n \end{array}$

• Assumption: *f* is bounded below.

Definition

 $\mathbf{x}^* \in \mathbb{R}^n$ is said to be a local minimum of f if there is a $\delta > 0$ such that $f(\mathbf{x}^*) \le f(\mathbf{x}) \quad \forall \mathbf{x} \in B(\mathbf{x}^*, \delta)$.

Surface Plot : $f(x) = x_1^2 + x_2^2$

Surface Plot : $f(x) = x_1 \exp(-x_1^2 - x_2^2)$

Contour Plot : $f(x) = x_1 \exp(-x_1^2 - x_2^2)$

The function value *does not decrease* in the local neighbourhood of a local minimum.

Definition

Let $\bar{x} \in \mathbb{R}^n$. If there exists a direction $d \in \mathbb{R}^n$ and $\delta > 0$ such that $f(\bar{x} + \alpha d) < f(\bar{x})$ for all $\alpha \in (0, \delta)$, then d is said to be a descent direction of f at \bar{x} .

Result

Let $f \in C^1$ and $\bar{x} \in \mathbb{R}^n$. Let $g(\bar{x}) = \nabla f(\bar{x})$. If $g(\bar{x})^T d < 0$ then, d is a descent direction of f at \bar{x} .

Proof.

Given $g(\bar{x})^T d < 0$. Now, $f \in C^1 \Rightarrow g \in C^0$. $\therefore \exists \delta > 0 \exists g(x)^T d < 0 \forall x \in LS(\bar{x}, \bar{x} + \delta d)$. Choose any $\alpha \in (0, \delta)$. Using first order truncated Taylor series,

 $f(\bar{\boldsymbol{x}} + \alpha \boldsymbol{d}) = f(\bar{\boldsymbol{x}}) + \alpha \boldsymbol{g}(\boldsymbol{x})^T \boldsymbol{d} \text{ where } \boldsymbol{x} \in LS(\bar{\boldsymbol{x}}, \bar{\boldsymbol{x}} + \alpha \boldsymbol{d})$ $\therefore f(\bar{\boldsymbol{x}} + \alpha \boldsymbol{d}) < f(\bar{\boldsymbol{x}}) \forall \alpha \in (0, \delta)$ $\Rightarrow \quad \boldsymbol{d} \text{ is a descent direction of } f \text{ at } \bar{\boldsymbol{x}}$

First Order Necessary Conditions (Unconstrained Minimization)

Let $f : \mathbb{R}^n \to \mathbb{R}$, $f \in C^1$. If x^* is a local minimum of f, then $g(x^*) = 0$.

Proof.

Let x^* be a local minimum of f and $g(x^*) \neq 0$. Choose $d = -g(x^*)$.

$$\therefore \mathbf{g}(\mathbf{x}^*)^T \mathbf{d} = -\mathbf{g}(\mathbf{x}^*)^T \mathbf{g}(\mathbf{x}^*) < 0$$

$$\mathbf{g}(\mathbf{x}^*)^T \mathbf{d} < 0 \Rightarrow \mathbf{d} \text{ is a descent direction of } f \text{ at } \mathbf{x}^*$$

$$\Rightarrow \mathbf{x}^* \text{ is not a local minimum, a contradiction.}$$

Therefore, $g(x^*) = 0$.

Provides a stopping condition for an optimization algorithm

• Consider the problem

$$\min f(\mathbf{x}) \stackrel{\Delta}{=} x_1 \exp(-x_1^2 - x_2^2)$$

• $g(x) = \begin{pmatrix} \exp(-x_1^2 - x_2^2)(1 - 2x_1^2) \\ \exp(-x_1^2 - x_2^2)(-2x_1x_2) \end{pmatrix}.$ • g(x) = 0 at $(\frac{1}{\sqrt{2}}, 0)^T$ and $(-\frac{1}{\sqrt{2}}, 0)^T$.

The function has a local minimum at $(-\frac{1}{\sqrt{2}}, 0)^T$ and a local maximum at $(\frac{1}{\sqrt{2}}, 0)^T$

Consider the problem

$$\min f(\mathbf{x}) \stackrel{\Delta}{=} x_1 \exp(-x_1^2 - x_2^2)$$

$$g(\mathbf{x}) = \begin{pmatrix} \exp(-x_1^2 - x_2^2)(1 - 2x_1^2) \\ \exp(-x_1^2 - x_2^2)(-2x_1x_2) \end{pmatrix}$$

٠

- g(x) = 0 at $(\frac{1}{\sqrt{2}}, 0)^T$ and $(-\frac{1}{\sqrt{2}}, 0)^T$.
- If $g(x^*) = 0$, then x^* is a *stationary point*.
- Need higher order derivatives to confirm that a stationary point is a local minimum

Second Order Necessary Conditions

Let $f : \mathbb{R}^n \to \mathbb{R}$, $f \in C^2$. If \mathbf{x}^* is a local minimum of f, then $g(\mathbf{x}^*) = \mathbf{0}$ and $H(\mathbf{x}^*)$ is positive semi-definite.

Proof.

Let x^* be a local minimum of f. From the first order necessary condition, $g(x^*) = 0$.

Assume $H(x^*)$ is not positive semi-definite. So, $\exists d$ such that $d^T H(x^*) d < 0$. Since H is continuous near x^* , $\exists \delta > 0$ such that $d^T H(x^* + \alpha d) d < 0 \forall \alpha \in (0, \delta)$.

Using second order truncated Taylor series around x^* , we have for all $\alpha \in (0, \delta)$,

$$f(\mathbf{x}^* + \alpha \mathbf{d}) = f(\mathbf{x}^*) + \alpha \mathbf{g}(\mathbf{x}^*)^T \mathbf{d} + \frac{1}{2} \alpha^2 \mathbf{d}^T \mathbf{H}(\bar{\mathbf{x}}) \mathbf{d}$$

where $\bar{\mathbf{x}} \in LS(\mathbf{x}^*, \mathbf{x}^* + \alpha \mathbf{d})$

$$\Rightarrow f(\boldsymbol{x}^* + \alpha \boldsymbol{d}) < f(\boldsymbol{x}^*)$$

 $\therefore x^*$ is not a local minimum, a contradiction.

Second Order Sufficient Conditions

Let $f : \mathbb{R}^n \to \mathbb{R}$, $f \in C^2$. If $g(\mathbf{x}^*) = 0$ and $H(\mathbf{x}^*)$ is positive definite, then \mathbf{x}^* is a strict local minimum of f.

Proof.

Since *H* is continuous and positive definite near x^* , $\exists \delta > 0$ such that H(x) is positive definite for all $x \in B(x^*, \delta)$. Choose some $x \in B(x^*, \delta)$. Using second order truncated Taylor series,

$$f(\boldsymbol{x}) = f(\boldsymbol{x}^*) + \boldsymbol{g}(\boldsymbol{x}^*)^T(\boldsymbol{x} - \boldsymbol{x}^*) + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}^*)^T \boldsymbol{H}(\bar{\boldsymbol{x}})(\boldsymbol{x} - \boldsymbol{x}^*)$$

where $\bar{\boldsymbol{x}} \in LS(\boldsymbol{x}, \boldsymbol{x}^*)$.

Since
$$(\boldsymbol{x} - \boldsymbol{x}^*)^T \boldsymbol{H}(\bar{\boldsymbol{x}})(\boldsymbol{x} - \boldsymbol{x}^*) > 0 \ \forall \ \boldsymbol{x} \in B(\boldsymbol{x}^*, \delta),$$

$$f(\mathbf{x}) > f(\mathbf{x}^*) \ \forall \ \mathbf{x} \in B(\mathbf{x}^*, \delta).$$

This implies that x^* is a strict local minimum.

• Consider the problem

$$\min f(\boldsymbol{x}) \stackrel{\Delta}{=} x_1 \exp(-x_1^2 - x_2^2)$$

•
•
$$g(x) = \begin{pmatrix} \exp(-x_1^2 - x_2^2)(1 - 2x_1^2) \\ \exp(-x_1^2 - x_2^2)(-2x_1x_2) \end{pmatrix}$$
.
• $g(x) = 0$ at $x_1^{*T} = (\frac{1}{\sqrt{2}}, 0)^T$ and $x_2^{*T} = (-\frac{1}{\sqrt{2}}, 0)^T$.
• $H(x_2^*) = \begin{pmatrix} 2\sqrt{2}\exp(-\frac{1}{2}) & 0 \\ 0 & \sqrt{2}\exp(-\frac{1}{2}) \end{pmatrix}$ is positive definite $\Rightarrow x_2^*$ is a strict local minimum
• $H(x_1^*) = \begin{pmatrix} -2\sqrt{2}\exp(-\frac{1}{2}) & 0 \\ 0 & -\sqrt{2}\exp(-\frac{1}{2}) \end{pmatrix}$ is negative definite $\Rightarrow x_1^*$ is a strict local maximum

• Consider the problem

$$\min f(\boldsymbol{x}) \stackrel{\Delta}{=} (x_2 - x_1^2)^2 + x_1^5$$

٠

•
$$g(\mathbf{x}) = \begin{pmatrix} 5x_1^4 - 4x_1(x_2 - x_1^2) \\ 2(x_2 - x_1^2) \end{pmatrix}$$

- Stationary Point: $(0, 0)^T$
- Hessian matrix at $(0,0)^T$:

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array}\right)$$

 Hessian is positive semi-definite at (0,0)^T; (0,0)^T is neither a local minimum nor a local maximum of f(x).

• Consider the problem

$$\min f(\boldsymbol{x}) \stackrel{\Delta}{=} x_1^2 + \exp(x_1 + x_2)$$

$$oldsymbol{g}(oldsymbol{x}) = \left(egin{array}{c} 2x_1 + \exp(x_1 + x_2) \ \exp(x_1 + x_2) \end{array}
ight).$$

• Need an iterative method to solve g(x) = 0.

• An iterative optimization algorithm generates a sequence $\{x^k\}_{k\geq 0}$, which converges to a local minimum.

Unconstrained Minimization Algorithm

(1) Initialize
$$\mathbf{x}^0, k := 0$$
.

(2) while stopping condition is not satisfied at x^k
(a) Find x^{k+1} such that f(x^{k+1}) < f(x^k).
(b) k := k + 1

endwhile

Output :
$$x^* = x^k$$
, a local minimum of $f(x)$.

Unconstrained Minimization Algorithm

(1) Initialize
$$\mathbf{x}^0, k := 0$$
.

(2) while stopping condition is not satisfied at x^k

(a) Find \mathbf{x}^{k+1} such that $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$.

(b)
$$k := k + 1$$

endwhile

Output : $x^* = x^k$, a local minimum of f(x).

- How to find x^{k+1} in Step 2(a) of the algorithm?
- Which *stopping condition* can be used?
- Does the algorithm converge? If yes, how fast does it converge?
- Does the convergence and its speed depend on x^0 ?

Stopping Conditions for a minimization problem:

• $\|g(x^k)\| = 0$ and $H(x^k)$ is positive semi-definite

Practical Stopping conditions

Assumption: There are no stationary points

٠

٩

۲

$$\|\boldsymbol{g}(\boldsymbol{x}^k)\| \leq \epsilon$$

$$egin{aligned} \|oldsymbol{g}(oldsymbol{x}^k)\| &\leq \epsilon(1+|f(oldsymbol{x}^k)|) \ & rac{f(oldsymbol{x}^k)-f(oldsymbol{x}^{k+1})}{|f(oldsymbol{x}^k)|} &\leq \epsilon \end{aligned}$$

Speed of Convergence

- Assume that an optimization algorithm generates a sequence {x^k}, which converges to x^{*}.
- How *fast* does the sequence converge to *x**?

Definition

The sequence $\{x^k\}$ converges to x^* with order p if

$$\lim_{k\to\infty}\frac{\|\boldsymbol{x}^{k+1}-\boldsymbol{x}^*\|}{\|\boldsymbol{x}^k-\boldsymbol{x}^*\|^p}=\beta, \ \beta<\infty$$

- Asymptotically, $\|x^{k+1} x^*\| = \beta \|x^k x^*\|^p$
- Higher the value of *p*, faster is the convergence.

(1) $p = 1, 0 < \beta < 1$ (Linear Convergence) Some Examples:

(2) $p = 2, \beta > 0$ (Quadratic Convergence) Example:

•
$$\beta = 1, || \mathbf{x}^0 - \mathbf{x}^* || = .1$$

Norms of $|| \mathbf{x}^k - \mathbf{x}^* || : 10^{-1}, 10^{-2}, 10^{-4}, 10^{-8}, ...$

 (3) Suppose an algorithm generates a convergent sequence {x^k} such that

$$\lim_{k \to \infty} \frac{\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^k - \boldsymbol{x}^*\|} = 0 \text{ and } \lim_{k \to \infty} \frac{\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^k - \boldsymbol{x}^*\|^2} = \infty$$

then this convergence is called superlinear convergence