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Unconstrained Minimization

Let f : R" — R. Consider the optimization problem:

min  f(x)

st. xeR?

@ Assumption: f is bounded below.

Definition

x* € R" is said to be a local minimum of f if thereisa ¢ > 0
such that f(x*) < f(x) Vx € B(x*,0).
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Surface Plot : f(x) = x7 + x3

Shirish Shevade Numerical Optimization



Surface Plot : f(x) = x; exp(—x7 — x3)
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Contour Plot : f(x) = x; exp(—x} — x3)

The function value does not decrease in the local
neighbourhood of a local minimum.
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Definition

Let ¥ € R”". If there exists a directiond € R" and § > 0 such
that f(X + ad) < f(¥) for all « € (0, ), thend is said to be a
descent direction of f at Xx.

Result

Let f € C' andx € R". Let g(¥) = Vf(¥). If g(¥)"d < O then,
d is a descent direction of f at X.

Proof.

Given g(¥)’d < 0. Now, f € C' = g€ C°.
~36>0 2gx)'d<0VxelLS(x x+dd).
Choose any « € (0, ). Using first order truncated Taylor series,

f(x+ad) = f(x)+ag(x)'d wherex € LS(%,% + ad)
Sf(x+ad) < f(x)Vae(0,9)
= d is a descent direction of f at ¥
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/S={x=f(x)=ttx.)}

S_={x: () <fxp)

ez ’

First order approximation
of S at x,, {x- g(xy)" (xxp) =0}
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First Order Necessary Conditions (Unconstrained
Minimization)

Let f:R" — R, f € Cl. If x* is a local minimum of £, then
glx*)=0.

Proof.

Let x* be a local minimum of f and g(x*) # 0.
Choose d = —g(x*).

~gx)'d = —g(x")'g(x") <0
g(x*)'d <0 = d isadescent direction of f at x*

*

= X" is not a local minimum, a contradiction.

Therefore, g(x*) = 0. O

v

Provides a stopping condition for an optimization algorithm
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Example:

@ Consider the problem

min f(x) = x1 exp(—x7 — x3)
° ~( exp(—x7 —x3)(1 — 2x7)
g(x) - ( exp( —x2)( 2x1X2) ) .

° g(x) = Oat(% 0)" and (— ﬂ,O)T.
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The function has a local minimum at (— %, 0)" and a local

maximum at (%, 0)"



@ Consider the problem

min f(x) £ x exp(—x] — )

olx) = ( exp(—x2 — 2)(1 — 2:2) ) |

exp(—x7 — x3)(—2x1x2)

° g(x)=0at(,0)" and (—75,0)".
e If g(x*) = 0, then x* is a stationary point.

@ Need higher order derivatives to confirm that a stationary
point is a local minimum
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Second Order Necessary Conditions
Let f:R" — R, f € C2 If x* is a local minimum of f, then
g(x*) = 0 and H(x™) is positive semi-definite.
Proof.
Let x* be a local minimum of f. From the first order necessary
condition, g(x*) = 0.
Assume H(x*) is not positive semi-definite. So, 3 d such that
d"H(x*)d < 0. Since H is continuous near x*, 3 § > 0 such
that d"H(x* + ad)d < 0V a € (0,9).
Using second order truncated Taylor series around x*, we have
for all a € (0,0), .
f(x*+ad) = f(x*)+ag(x*)'d+ EaszH(i)d
where ¥ € LS(x*,x" + ad)
=f(x"+ad) < f(x¥)

. x* 1is not a local minimum, a contradiction.
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Second Order Sufficient Conditions
Let f:R" — R, f € C*. If g(x*) = 0 and H(x*) is positive
definite, then x™ is a strict local minimum of f.

Proof.

Since H is continuous and positive definite near x*, 36 > 0
such that H(x) is positive definite for all x € B(x*, ).

Choose some x € B(x*, ). Using second order truncated Taylor
series,

Fle) = F) +gle) (e —x) + 5(x XV HE(x —x)

where ¥ € LS(x,x").
Since (x —x*)"H(X)(x —x*) > 0V x € B(x*,0),
f(x) > f(x")Vx € B(x",9).

This implies that x* is a strict local minimum. 0
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Example:

@ Consider the problem

min f(x) £ x, exp(—x} — 22)

°
_ ( exp(—xf —x3)(1 — 2x7)
g(x) = ( exp(—x7 — x3)(—2x1x2)

o g(x)=0atx;" = (%,O)T and x3" = (—2,0)7.

1
X
2v/2exp(—1) 0
H(x3) = 2
° Hix;) < 0 V2exp(—1)
definite = x73 is a strict local minimum
—2v2exp(—1) 0

H(x}) =
° Hixi) < 0 —v2exp(—1)
definite = x7 is a strict local maximum

) is negative
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Example:
@ Consider the problem

min f(x) £ (v, — x3)? + 2]

5= (M )

e Stationary Point: (0,0)”

@ Hessian matrix at (0,0)7 :

00
0 2
@ Hessian is positive semi-definite at (0,0); (0,0)" is
neither a local minimum nor a local maximum of f(x).
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Example:

@ Consider the problem

min f(x) = x} + exp(x; + 1)

) = (Mot )

@ Need an iterative method to solve g(x) = 0.
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@ An iterative optimization algorithm generates a sequence
{x*} >0, which converges to a local minimum.

Unconstrained Minimization Algorithm

(1) Initialize x°, k := 0.
(2) while stopping condition is not satisfied at x*
(a) Find x**! such that f(x**+1) < f(xb).
b) k:=k+1
endwhile
Output : x* = x¥, a local minimum of f(x).
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Unconstrained Minimization Algorithm

(1) Initialize x°, k := 0.
(2) while stopping condition is not satisfied at x*
(a) Find x*! such that f(x*1) < f(x*).
b) k:=k+1
endwhile

Output : x* = x*, a local minimum of f(x).

@ How to find x**! in Step 2(a) of the algorithm?
@ Which stopping condition can be used?

@ Does the algorithm converge? If yes, how fast does it
converge?

@ Does the convergence and its speed depend on x°?
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Stopping Conditions for a minimization problem:

o |lg(x")|| = 0 and H(x*) is positive semi-definite
Practical Stopping conditions

Assumption: There are no stationary points

lg)l < e
lg)II < (1 + [ ()])

FO5) — ()
Fon

€
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Speed of Convergence

@ Assume that an optimization algorithm generates a
sequence {x*}, which converges to x*.

@ How fast does the sequence converge to x*?

Definition

The sequence {x*} converges to x* with order p if

N
Sy T

e Asymptotically, ||x**! —x*| = B|]x* — x*||?

o Higher the value of p, faster is the convergence.
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(1) p=1,0 < B < 1 (Linear Convergence)
Some Examples:
o B=1,|x" —x*|| = .1
Norms of ||x* —x*||: 1071, 1072,1073,1074,. ..
o f=9x"—x*|=.1
Norms of ||x* —x*|| : 10~!,.09,.081,.0729, ...
(2) p =2,3 > 0 (Quadratic Convergence)
Example:
o B=1,[x"—x*|| =.1
Norms of |jx* —x*|| : 1071, 107210741078, ...
(3) Suppose an algorithm generates a convergent sequence
{x*} such that
k+1 * k-1 *
lim u:()and lim M:
S e =] x|

then this convergence is called superlinear convergence
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