Numerical Optimization Unconstrained Optimization

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Unconstrained Minimization Algorithm

(1) Initialize \mathbf{x}^0 , set k := 0.

(2) while stopping condition is not satisfied at x^k

(a) Find \mathbf{x}^{k+1} such that $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$.

(b)
$$k := k + 1$$

endwhile

Output : $x^* = x^k$, a local minimum of f(x).

- How to find x^{k+1} in Step 2(a) of the algorithm?
- Which *stopping condition* can be used?
- Does the algorithm converge? If yes, how fast does it converge?
- Does the convergence and its speed depend on x^0 ?

Stopping Conditions for a minimization problem:

• $\|g(x^k)\| = 0$ and $H(x^k)$ is positive semi-definite

Practical Stopping conditions

Assumption: There are no stationary points

٠

٩

٢

$$\|\boldsymbol{g}(\boldsymbol{x}^k)\| \leq \epsilon$$

$$egin{aligned} \|oldsymbol{g}(oldsymbol{x}^k)\| &\leq \epsilon(1+|f(oldsymbol{x}^k)|) \ & rac{f(oldsymbol{x}^k)-f(oldsymbol{x}^{k+1})}{|f(oldsymbol{x}^k)|} &\leq \epsilon \end{aligned}$$

Speed of Convergence

- Assume that an optimization algorithm generates a sequence {x^k}, which converges to x^{*}.
- How *fast* does the sequence converge to *x**?

Definition

The sequence $\{x^k\}$ converges to x^* with order p if

$$\lim_{k\to\infty}\frac{\|\boldsymbol{x}^{k+1}-\boldsymbol{x}^*\|}{\|\boldsymbol{x}^k-\boldsymbol{x}^*\|^p}=\beta, \ \beta<\infty$$

- Asymptotically, $\|x^{k+1} x^*\| = \beta \|x^k x^*\|^p$
- Higher the value of *p*, faster is the convergence.
- β : Convergence rate

(1) $p = 1, 0 < \beta < 1$ (Linear Convergence) Some Examples:

(2) $p = 2, \beta > 0$ (Quadratic Convergence) Example:

•
$$\beta = 1, || \mathbf{x}^0 - \mathbf{x}^* || = .1$$

Norms of $|| \mathbf{x}^k - \mathbf{x}^* || : 10^{-1}, 10^{-2}, 10^{-4}, 10^{-8}, ...$

 (3) Suppose an algorithm generates a convergent sequence {x^k} such that

$$\lim_{k \to \infty} \frac{\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^k - \boldsymbol{x}^*\|} = 0 \text{ and } \lim_{k \to \infty} \frac{\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^k - \boldsymbol{x}^*\|^2} = \infty$$

then this convergence is called superlinear convergence

Examples:

- The sequence with x^k = 1 + a^k where 0 < a < 1 converges to 1 *linearly*, with convergence rate, β = a.
- The sequence $x^k = a^{(2^k)}$ where 0 < a < 1 converges to zero *quadratically*, with convergence rate, $\beta = 1$.
- The sequence $1 + k^{-k}$ converges *superlinearly* to 1.

Use of Error Functions

- Suppose the sequence x^k converges to x^* .
- Let $E : \mathbb{R}^n \to \mathbb{R}, \ E \in \mathcal{C}^0$
- Convergence properties of x^k can be studied by analyzing the convergence of E(x^k) to E(x^{*}).
- In general, the order of convergences of a sequence is *insensitive* to the choice of error function.

Unconstrained Minimization Algorithm

- (1) Initialize \mathbf{x}^0 and $\boldsymbol{\epsilon}$, set k := 0.
- (2) while $\|\boldsymbol{g}(\boldsymbol{x}^k)\| > \epsilon$
 - (a) Find \mathbf{x}^{k+1} such that $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$.
 - (b) k := k + 1

endwhile

Output : $x^* = x^k$, a stationary point of f(x).

How to find x^{k+1} in Step 2(a)?

- Find a *descent direction* d^k for f at x^k
- Take a step $\alpha^k (> 0)$ along d^k such that

•
$$f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$$

• $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$

• Descent direction set: $\{\boldsymbol{d} \in \mathbb{R}^n : \boldsymbol{g}^{k^T} \boldsymbol{d} < 0\}$ where $\boldsymbol{g}^k = \boldsymbol{g}(\boldsymbol{x}^k)$

Unconstrained Minimization Algorithm

(1) Initialize \mathbf{x}^0 and ϵ , set k := 0.

- (2) while $||g(x^k)|| > \epsilon$
 - (a) Find a descent direction d^k for f at x^k
 - (b) Find $\alpha^k (> 0)$ along d^k such that $f(\mathbf{x}^k + \alpha^k d^k) < f(\mathbf{x}^k)$ (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k d^k$

(d)
$$k := k + 1$$

endwhile

Output : $x^* = x^k$, a stationary point of f(x).

• How to determine α^k in Step 2(b)?

Step Length Determination

 Exact Line Search : Given a descent direction d^k, determine α^k by solving the optimization problem:

$$\alpha^{k} = \arg\min_{\alpha>0} \phi(\alpha) \stackrel{\Delta}{=} f(\boldsymbol{x}^{k} + \alpha \boldsymbol{d}^{k})$$

- Inexact Line Search :
 - Choice of α^k is crucial

Example: Consider the problem,

min
$$x^2$$

Local and global minimum at x* = 0
Let x^k = (-1)^k(1+2^{-k}) and d^k = (-1)^k, k = 0, 1, 2, ...

$$\{x\} : \{2, -\frac{3}{2}, \frac{5}{4}, -\frac{9}{8}, \dots\}$$
$$\{f\} : \{4, \frac{9}{4}, \frac{25}{16}, \frac{81}{64}, \dots\}$$

•
$$f(x^{k+1}) < f(x^k) \ \forall \ k = 0, 1, 2, \dots$$

• The sequence x^k *does not* converge.

• Small decrease in function values relative to the step length

Example: Consider the problem,

min x^2

- Local and global minimum at $x^* = 0$
- Let $x^k = (1 + 2^{-k})$ and $d^k = -1$, k = 0, 1, 2, ...

$$\{x\} : \{2, \frac{3}{2}, \frac{5}{4}, \frac{9}{8}, \ldots\}$$
$$\{f\} : \{4, \frac{9}{4}, \frac{25}{16}, \frac{81}{64}, \ldots\}$$

•
$$f(x^{k+1}) < f(x^k) \ \forall \ k = 0, 1, 2, ...$$

• $\lim_{k \to \infty} x^k = 1 \neq x^*$

• Step sizes are too small relative to the initial rate of decrease of *f*

Inexact Line Search

Need to avoid

- Small decrease in function values relative to the step length
- Small step sizes

Armijo's condition ensures sufficient decrease in the function value

Define $\phi_1(\alpha) = f(\mathbf{x}^k) + c_1 \alpha \mathbf{g}^{k^T} \mathbf{d}^k$, $c_1 \in (0, 1)$ Choose α^k such that $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) \le \phi_1(\alpha^k)$ (Armijo's condition)

Goldstein's condition ensures that step lengths are not too small

Armijo-Goldstein Conditions: Choose α^k such that

$$\phi_2(\alpha^k) \leq f(\boldsymbol{x}^k + \alpha^k \boldsymbol{d}^k) \leq \phi_1(\alpha^k)$$

Wolfe's condition ensures sufficient rate of decrease of function value in the given direction

Choose α^k such that

 $\phi'(\alpha^k) \ge c_2 \phi'(0), \ \ c_2 \in (c_1,1)$ Wolfe's Condition