Numerical Optimization Unconstrained Optimization

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Unconstrained Minimization Algorithm

(1) Initialize x^0 , set $k := 0$.

(2) while *stopping condition is not satisfied at* x^k

(a) Find x^{k+1} such that $f(x^{k+1}) < f(x^k)$.

$$
(b) k := k + 1
$$

endwhile

Output : $x^* = x^k$, a local minimum of $f(x)$.

- How to find x^{k+1} in Step 2(a) of the algorithm?
- Which *stopping condition* can be used?
- Does the algorithm converge? If yes, how fast does it converge?
- Does the convergence and its speed depend on x^0 ?

Stopping Conditions for a minimization problem:

 $\|\mathbf{g}(\mathbf{x}^k)\| = 0$ and $\mathbf{H}(\mathbf{x}^k)$ is positive semi-definite

Practical Stopping conditions

Assumption: There are no *stationary* points

 \bullet

 \bullet

 \bullet

$$
\|\bm{g}(\bm{x}^k)\| \leq \epsilon
$$

$$
\|g(x^k)\| \le \epsilon (1 + |f(x^k)|)
$$

$$
\frac{f(x^k) - f(x^{k+1})}{|f(x^k)|} \le \epsilon
$$

Speed of Convergence

- Assume that an optimization algorithm generates a sequence $\{x^k\}$, which converges to x^* .
- How *fast* does the sequence converge to *x* ∗ ?

Definition

The sequence $\{x^k\}$ converges to x^* with order p if

$$
\lim_{k\to\infty}\frac{\|\mathbf{x}^{k+1}-\mathbf{x}^*\|}{\|\mathbf{x}^k-\mathbf{x}^*\|^p}=\beta,\ \ \beta<\infty
$$

- Asymptotically, $\|\mathbf{x}^{k+1} \mathbf{x}^*\| = \beta \|\mathbf{x}^k \mathbf{x}^*\|^p$
- Higher the value of *p*, faster is the convergence.
- θ : Convergence rate

(1) $p = 1, 0 < \beta < 1$ (Linear Convergence) Some Examples:

•
$$
\beta = .1, ||x^0 - x^*|| = .1
$$

Norms of $||x^k - x^*|| : 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, ...$
• $\beta = .9, ||x^0 - x^*|| = .1$
Norms of $||x^k - x^*|| : 10^{-1}, .09, .081, .0729, ...$

(2) $p = 2, \beta > 0$ (Quadratic Convergence) Example:

•
$$
\beta = 1, ||x^0 - x^*|| = .1
$$

Norms of $||x^k - x^*|| : 10^{-1}, 10^{-2}, 10^{-4}, 10^{-8}, ...$

(3) Suppose an algorithm generates a convergent sequence ${x^k}$ such that

$$
\lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|} = 0 \text{ and } \lim_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|^2} = \infty
$$

then this convergence is called superlinear convergence

Examples:

- The sequence with $x^k = 1 + a^k$ where $0 < a < 1$ converges to 1 *linearly*, with convergence rate, $\beta = a$.
- The sequence $x^k = a^{(2^k)}$ where $0 < a < 1$ converges to zero *quadratically*, with convergence rate, $\beta = 1$.
- The sequence $1 + k^{-k}$ converges *superlinearly* to 1.

Use of Error Functions

- Suppose the sequence x^k converges to x^* .
- Let $E: \mathbb{R}^n \to \mathbb{R}, E \in \mathcal{C}^0$
- Convergence properties of x^k can be studied by analyzing the convergence of $E(x^k)$ to $E(x^*)$.
- In general, the order of convergences of a sequence is *insensitive* to the choice of error function.

Unconstrained Minimization Algorithm

- (1) Initialize x^0 and ϵ , set $k := 0$.
- (2) while $\|\mathbf{g}(\mathbf{x}^k)\| > \epsilon$
	- (a) Find x^{k+1} such that $f(x^{k+1}) < f(x^k)$.
	- (b) $k := k + 1$

endwhile

Output : $x^* = x^k$, a stationary point of $f(x)$.

How to find x^{k+1} in Step 2(a)?

- Find a *descent direction* \boldsymbol{d}^k *for* f *at* \boldsymbol{x}^k
- Take a step $\alpha^k (>0)$ along \boldsymbol{d}^k such that

$$
\bullet \ f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k) \\
\bullet \ \mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k
$$

Descent direction set: $\{ \boldsymbol{d} \in \mathbb{R}^n : \boldsymbol{g}^{\boldsymbol{k}^T} \boldsymbol{d} < 0 \}$ where $\boldsymbol{g}^k = \boldsymbol{g}(\boldsymbol{x}^k)$

Unconstrained Minimization Algorithm

(1) Initialize x^0 and ϵ , set $k := 0$.

- (2) while $\|\mathbf{g}(\mathbf{x}^k)\| > \epsilon$
	- (a) Find a descent direction d^k for f at x^k
	- (b) Find $\alpha^k (> 0)$ along d^k such that $f(x^k + \alpha^k d^k) < f(x^k)$ (c) $x^{k+1} = x^k + \alpha^k d^k$

(d)
$$
k := k + 1
$$

endwhile

Output : $x^* = x^k$, a stationary point of $f(x)$.

How to determine α^k in Step 2(b)?

Step Length Determination

Exact Line Search : Given a descent direction *d k* , determine α^k by solving the optimization problem:

$$
\alpha^k = \arg\min_{\alpha>0} \phi(\alpha) \stackrel{\Delta}{=} f(\mathbf{x}^k + \alpha \mathbf{d}^k)
$$

o Inexact Line Search :

Choice of α^k is crucial

Example: Consider the problem,

$$
\min x^2
$$

Local and global minimum at $x^* = 0$ Let $x^k = (-1)^k (1 + 2^{-k})$ and $d^k = (-1)^k$, $k = 0, 1, 2, ...$

{x}: {2,
$$
-\frac{3}{2}, \frac{5}{4}, -\frac{9}{8}, \ldots
$$
}
{f}: {4, $\frac{9}{4}, \frac{25}{16}, \frac{81}{64}, \ldots$ }

•
$$
f(x^{k+1}) < f(x^k) \forall k = 0, 1, 2, ...
$$

The sequence x^k *does not* converge.

Small decrease in function values relative to the step length

Example: Consider the problem,

min x^2

Local and global minimum at $x^* = 0$ Let $x^k = (1 + 2^{-k})$ and $d^k = -1$, $k = 0, 1, 2, ...$

$$
\{x\} : \{2, \frac{3}{2}, \frac{5}{4}, \frac{9}{8}, \ldots\}
$$

$$
\{f\} : \{4, \frac{9}{4}, \frac{25}{16}, \frac{81}{64}, \ldots\}
$$

$$
\bullet \ f(x^{k+1}) < f(x^k) \ \forall \ k = 0, 1, 2, \ldots
$$
\n
$$
\bullet \ \lim_{k \to \infty} x^k = 1 \neq x^*
$$

Step sizes are too small relative to the initial rate of decrease of *f*

Inexact Line Search

Need to avoid

- Small decrease in function values relative to the step length
- Small step sizes

Armijo's condition ensures sufficient decrease in the function value

Define $\phi_1(\alpha) = f(x^k) + c_1 \alpha g^{kT} d^k$, $c_1 \in (0, 1)$ Choose α^k such that $f(x^k + \alpha^k d^k) \le \phi_1(\alpha^k)$ (Armijo's condition)

Goldstein's condition ensures that step lengths are not too small

Armijo-Goldstein Conditions: Choose α^k such that

 $\phi_2(\alpha^k) \leq f(\pmb{x}^k + \alpha^k \pmb{d}^k) \leq \phi_1(\alpha^k)$

Wolfe's condition ensures sufficient rate of decrease of function value in the given direction

Choose α^k such that

 $\phi'(\alpha^k) \geq c_2 \phi'(0)$, $c_2 \in (c_1, 1)$ Wolfe's Condition