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Unconstrained Minimization Algorithm

(1) Initialize x0, set k := 0.
(2) while stopping condition is not satisfied at xk

(a) Find xk+1 such that f (xk+1) < f (xk).
(b) k := k + 1

endwhile
Output : x∗ = xk, a local minimum of f (x).

How to find xk+1 in Step 2(a) of the algorithm?
Which stopping condition can be used?
Does the algorithm converge? If yes, how fast does it
converge?
Does the convergence and its speed depend on x0?
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Stopping Conditions for a minimization problem:

‖g(xk)‖ = 0 and H(xk) is positive semi-definite

Practical Stopping conditions

Assumption: There are no stationary points

‖g(xk)‖ ≤ ε

‖g(xk)‖ ≤ ε(1 + |f (xk)|)

f (xk)− f (xk+1)

|f (xk)|
≤ ε
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Speed of Convergence

Assume that an optimization algorithm generates a
sequence {xk}, which converges to x∗.
How fast does the sequence converge to x∗?

Definition
The sequence {xk} converges to x∗ with order p if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p = β, β < ∞

Asymptotically, ‖xk+1 − x∗‖ = β‖xk − x∗‖p

Higher the value of p, faster is the convergence.
β : Convergence rate
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(1) p = 1, 0 < β < 1 (Linear Convergence)
Some Examples:

β = .1, ‖x0 − x∗‖ = .1
Norms of ‖xk − x∗‖ : 10−1, 10−2, 10−3, 10−4, . . .
β = .9, ‖x0 − x∗‖ = .1
Norms of ‖xk − x∗‖ : 10−1, .09, .081, .0729, . . .

(2) p = 2, β > 0 (Quadratic Convergence)
Example:

β = 1, ‖x0 − x∗‖ = .1
Norms of ‖xk − x∗‖ : 10−1, 10−2, 10−4, 10−8, . . .

(3) Suppose an algorithm generates a convergent sequence
{xk} such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= 0 and lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖2 = ∞

then this convergence is called superlinear convergence
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Examples:

The sequence with xk = 1 + ak where 0 < a < 1
converges to 1 linearly, with convergence rate, β = a.
The sequence xk = a(2k)where 0 < a < 1 converges to
zero quadratically, with convergence rate, β = 1.
The sequence 1 + k−k converges superlinearly to 1.
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Use of Error Functions

Suppose the sequence xk converges to x∗.
Let E : Rn → R, E ∈ C0

Convergence properties of xk can be studied by analyzing
the convergence of E(xk) to E(x∗).
In general, the order of convergences of a sequence is
insensitive to the choice of error function.
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Unconstrained Minimization Algorithm

(1) Initialize x0 and ε, set k := 0.
(2) while ‖g(xk)‖ > ε

(a) Find xk+1 such that f (xk+1) < f (xk).
(b) k := k + 1

endwhile
Output : x∗ = xk, a stationary point of f (x).

How to find xk+1 in Step 2(a)?

Find a descent direction dk for f at xk

Take a step αk(> 0) along dk such that

f (xk+1) < f (xk)
xk+1 = xk + αkdk
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Descent direction set: {d ∈ Rn : gkTd < 0} where
gk = g(xk)

Shirish Shevade Numerical Optimization



Unconstrained Minimization Algorithm

(1) Initialize x0 and ε, set k := 0.
(2) while ‖g(xk)‖ > ε

(a) Find a descent direction dk for f at xk

(b) Find αk(> 0) along dk such that f (xk + αkdk) < f (xk)
(c) xk+1 = xk + αkdk

(d) k := k + 1

endwhile
Output : x∗ = xk, a stationary point of f (x).

How to determine αk in Step 2(b)?
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Step Length Determination

Exact Line Search : Given a descent direction dk,
determine αk by solving the optimization problem:

αk = arg min
α>0

φ(α)
∆
= f (xk + αdk)

Inexact Line Search :
Choice of αk is crucial
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Consider the problem,
min x2
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Example: Consider the problem,

min x2

Local and global minimum at x∗ = 0
Let xk = (−1)k(1 + 2−k) and dk = (−1)k, k = 0, 1, 2, . . .

{x} : {2,−3
2
,

5
4
,−9

8
, . . .}

{f} : {4,
9
4
,

25
16

,
81
64

, . . .}

f (xk+1) < f (xk) ∀ k = 0, 1, 2, . . .

The sequence xk does not converge.
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Small decrease in function values relative to the step length
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Example: Consider the problem,

min x2

Local and global minimum at x∗ = 0
Let xk = (1 + 2−k) and dk = −1, k = 0, 1, 2, . . .

{x} : {2,
3
2
,

5
4
,

9
8
, . . .}

{f} : {4,
9
4
,

25
16

,
81
64

, . . .}

f (xk+1) < f (xk) ∀ k = 0, 1, 2, . . .

limk→∞ xk = 1 6= x∗
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Step sizes are too small relative to the initial rate of
decrease of f
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Inexact Line Search
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Need to avoid
Small decrease in function values relative to the step length
Small step sizes
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Armijo’s condition ensures sufficient decrease in the function
value
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Define φ1(α) = f (xk) + c1αgkTdk, c1 ∈ (0, 1)
Choose αk such that f (xk + αkdk) ≤ φ1(α

k) (Armijo’s
condition)
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Goldstein’s condition ensures that step lengths are not too small
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Define φ2(α) = f (xk) + c2αgkTdk, c2 ∈ (c1, 1)
Choose αk such that f (xk + αkdk) ≥ φ2(α

k) (Goldstein’s
condition)
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Armijo-Goldstein Conditions: Choose αk such that

φ2(α
k) ≤ f (xk + αkdk) ≤ φ1(α

k)
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Wolfe’s condition ensures sufficient rate of decrease of function
value in the given direction

Choose αk such that

φ′(αk) ≥ c2φ
′(0), c2 ∈ (c1, 1) Wolfe’s Condition
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