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Unconstrained Minimization Algorithm

(1) Initialize x° and €, set k := 0.
(2) while ||g(x*)| > ¢
(a) Find a descent direction d* for f at x*
(b) Find of(> 0) along d* such that
() f(x* + okd) < f(x)
(ii) of satisfies Armijo-Wolfe conditions
(c) x*1 = xk 4 okd*
d) ki=k+1
endwhile
Output : x* = x*, a stationary point of f(x).

Does this algorithm converge?
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Consider the problem,

min f(x)

X

e Let f € C' and f be bounded below.

@ An optimization algorithm to minimize f(x) generates a
sequence, {x}, k > 0.

@ Let the corresponding sequence of function values be
{4 k> 0.
o fAH < X k>0
@ Stopping condition: ||g"|| < e
What can we say about ||g*|| as k — 00?
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Suppose, at every iteration k of the optimization algorithm,
@ The direction d* is chosen such that g"Tdk <0

e Define ¢(a) = f(x* + ad"). o*(> 0) is chosen such that
Armijo-Wolfe conditions are satisfied.

fk+l < fk+ClOéngdk, Cc| € (0, 1)
¢/(Oék) > ¢'(0), c; € (c1,1)

o il < iy k>0

o xM1 = xk 4 ofd"*
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Given: f**! < ffV k> 0.

{f*} : Monotonically decreasing sequence, which is also
bounded below.

S Af*} — f* where f* < oo.

P —ff<oo VE>0

g klirgofo —ff < o0
Using Armijo’s condition, o/’s are chosen such that
fk+1 < fk + Clakngdk
k
< fraY g
Therefore, /=0

00 > fO— > ¢ Zo/g’ &
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o
L — g d < oo
j=0

[e.9]

. .T .

" —c) o d <
Z\/ng/\ ,
Jj=0 <0 >0 <0

Therefore, sum of infinitely many positive terms is finite.
This implies, beyond certain iteration , a"g"Tdk =0.
Using Wolfe condition, o is chosen such that

¢'(a)

k+1T gk
d

v

Cy ¢/(0), Cy) € (C], 1)
.8 CH g"Tdk
. (gk+1 _gk)Tdk > (e — l)ngdk

v
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Let g be Lipschitz continuous. Thatis, 3 L,0 < L < oo such
that
lg"*" — &Ml < Lilx*" — x|

But, we have, x**! = x* + o*d*.
g =gl < Lot

(gk+1 _gk)Tdk < Lakddek
But, using Wolfe conditions, (g¢! — g&)7d* > (c, — 1)g*"d".
Therefore,

of > ° =
L |||
. kT gk\2

akngdk < €2 l(g :’)
L a2
T 4k\2
k kT gk (1_C2)(gkd)
L—qo'gtd
1 E L [d
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T 1k\2
kT gk (l—cz)(gkd)
—cia d > c
SRS S

Let 6, be the angle between g* and d*. Therefore,

ko kT gk (1 — c2) ||g¥]1?||d*||>cos26,
caghd > c ,

L ">
> (1 — Cz)

T
. —ciofghdt > C]T“ngZCOSZ@k

But, using Armijo’s conditions, —c1 Y -, ofgt d* < oo,
Therefore,

1_ o0
( LCZ)ZHngZcossz < o0

k=0

1
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(1 —c2)
L

o0
o ZHngzcossz < oo
k=0

This implies
llg*||>cos?d; — O.

If, at every iteration, d* is chosen such that,
T
g'd" < 0and cos®0, > 6 >0,

then, we have,
Jim lg*[l = o.
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Global Convergence Theorem

Global Convergence Theorem [Zoutendijk]

Consider the problem to minimize f(x) over R". Suppose f is
bounded below in R?, f € C' and the gradient, Vf(= g) is
Lipschitz continuous. If at every iteration k of an optimization
algorithm, a descent direction d* is chosen such that

cos? 0, > 0(> 0) (where 6 is the angle between d* and g*)
and o satisfies Armijo-Wolfe conditions, then the optimization
algorithm either terminates in a finite number of iterations or

lim [lgf]| = 0.
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Sufficient Decrease and Backtracking

@ Armijo-Goldstein Conditions: Choose of such that
P2 (aF) < f(x* + Fd") < ¢1(ah)

where ¢;(a) = f(x*) + c;agt’d*, ¢, € (0,1) and
da() = f(xk) + cragt"d*, ¢, € (1, 1).
@ Use of backtracking line search with Armijo’s condition

Backtracking Line Search

(1) Choose &(> 0),p € (0,1),¢; € (0,1). Set = é&.
(2) while f(x* + ad") > f(x*) + c,0gt" d*
o= pa
endwhile
Output : of =«
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e Descent direction set: {d € R" : g*'d < 0} where
g =g(x")
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Descent Directions

o Let g¢ = 0 and d“ = —A*g" where A® is a symmetric
matrix

o If A¥ is positive definite,

T T
gk dk — _gk Akgk <O
= d" is a descent direction
o d" = —A*gkis a descent direction if A* is positive definite.

e Different optimization algorithms use different A*
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How to find d*?
Consider the first order approximation to f(x) about x*:

Fx) ~f) et + g (r — ) = f(¥) +8d

Maximum decrease in f(x) is possible by solving (P1):
ming ¢'d
st. d'd=1

Let 6, be the angle between gf and d.

T
g'd = |g"llld| coso;

= ||g*||cosb (.-d'd=1)

Therefore, the solution to the problem (P1) is d* = —g*/||g"||
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Steepest Descent Method

@ Uses the steepest descent direction, d* = —g*

Steepest Descent Algorithm

(1) Initialize x° and ¢, set k := 0.
(2) while ||gF|| > €
(a) d“ = —g*
(b) Find of(> 0) along d* such that
(i) fO* +akd') < f(x)
(ii) of satisfies Armijo-Wolfe conditions
(C) xk+l :xk +O4kdk
d) ki=k+1
endwhile
Output : x* = x* a stationary point of f(x).

@ Exact or Backtracking line search can be used in step 2(b)
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Example:
min f(x) 2 (x; — 7)% + (x, — 2)?

2"‘_7 ) H(x):<g g)
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Example:

Behaviour of the steepest descent algorithm (with exact line
search) applied to f(x) using x° = (9,4)7
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Example:
min £(x) 2 (x; — 7)% + (x, — 2)?

Behaviour of the steepest descent algorithm (with exact line
search) applied to f(x) using x° = (5.5, 3)7
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Example:
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Example:
min f(x) 2 4x7 4 x5 — 2x1x,

Behaviour of the steepest descent algorithm (with exact line
search) applied to f(x) using x* = (-1, =2)7
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Example:
min f(x) 2 4x7 4 x5 — 2x1x,

Behaviour of the steepest descent algorithm (with exact line
search) applied to f(x) using x° = (1,0)7
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Example (Rosenbrock function):

min f(x) 2 100(x, — xf)2 +(1—x)
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Example (Rosenbrock function):

min f(x) 2 100(x, — )c%)2 +(1—x)°
1.2 T T T T T T T T T T //

. . . . . . . . . . .
-1 -0.8 -0.6 -0.4 -0.2 o] 0.2 0.4 0.6 0.8 1
x1

Behaviour of the steepest descent algorithm (with backtracking
line search) applied to f(x) using x° = (0.6,0.6)”
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Example (Rosenbrock function):

min f(x) £ 100(x; — 22)* + (1 — x,)°

K[ 2 ] % ] 760 [P —x /&) )

0 0.6 0.6 5.92 0.5657 5.92

10 0.72 0.52 0.0792 0.5601 0.0782
100 0.78 0.61 0.0465 0.4414 0.0465
1000 | 0.9914 | 0.9828 | 7.45 x107> 0.0192 7.45 x107
2028 | 0.9989 | 0.9978 | 1.81 x107° 0.0024 1.81 x10°°

Table: Steepest descent method (with backtracking line search)
applied to Rosenbrock function, using x° = (0.6, 0.6)7.
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Example (Rosenbrock function):

min f(x) 2 100(x, — )c%)2 +(1—x)°

1.2 T T T T T T T
. //
@

L L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Behaviour of the steepest descent algorithm (with backtracking
line search) applied to f(x) using x° = (—1.2,1)7
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Example (Rosenbrock function):

min f(x) £ 100(x; — 22)* + (1 — x,)°

K[ 2 ] % ] 760 [P —x /&) )

0 -1.2 1.0 24.2 2.2 242

10 -1.00 1.01 4.02 2.0042 4.02
100 0.57 0.32 0.1867 0.80 0.1867
1000 | 0.99 0.97 1.99 x10~* 0.0314 1.99 x10~*
2300 | 0.9989 | 0.9979 | 1.11 x10~° 0.0024 1.11 x10°°

Table: Steepest descent method (with backtracking lines search)
applied to Rosenbrock function, using x° = (—1.2,1)7.
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