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Unconstrained Minimization Algorithm

(1) Initialize x0 and ε, set k := 0.
(2) while ‖g(xk)‖ > ε

(a) Find a descent direction dk for f at xk

(b) Find αk(> 0) along dk such that
(i) f (xk + αkdk) < f (xk)

(ii) αk satisfies Armijo-Wolfe conditions

(c) xk+1 = xk + αkdk

(d) k := k + 1

endwhile
Output : x∗ = xk, a stationary point of f (x).

Does this algorithm converge?
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Consider the problem,

minx f (x)

Let f ∈ C1 and f be bounded below.
An optimization algorithm to minimize f (x) generates a
sequence, {xk}, k ≥ 0.
Let the corresponding sequence of function values be
{f k}, k ≥ 0.
f k+1 < f k, k ≥ 0
Stopping condition: ‖gk‖ < ε

What can we say about ‖gk‖ as k →∞?
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Suppose, at every iteration k of the optimization algorithm,
The direction dk is chosen such that gkTdk < 0
Define φ(α) = f (xk + αdk). αk(> 0) is chosen such that
Armijo-Wolfe conditions are satisfied.

f k+1 ≤ f k + c1αgkTdk, c1 ∈ (0, 1)

φ′(αk) ≥ c2φ
′(0), c2 ∈ (c1, 1)

f k+1 < f k ∀ k ≥ 0
xk+1 = xk + αkdk
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Given: f k+1 < f k ∀ k ≥ 0.
{f k} : Monotonically decreasing sequence, which is also
bounded below.
∴ {f k} → f ∗ where f ∗ < ∞.
∴ f 0 − f k < ∞ ∀ k ≥ 0

∴ lim
k→∞

f 0 − f k < ∞

Using Armijo’s condition, αj’s are chosen such that

f k+1 ≤ f k + c1α
kgkTdk

≤ f 0 + c1

k∑
j=0

αjgjTdj

Therefore,

∞ > f 0 − f k+1 ≥ −c1

k∑
j=0

αjgjTdj
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∴ − c1

∞∑
j=0

αjgjTdj < ∞

∴
∞∑

j=0

−c1︸︷︷︸
<0

αj︸︷︷︸
>0

gjTdj︸︷︷︸
<0

< ∞

Therefore, sum of infinitely many positive terms is finite.
This implies, beyond certain iteration k, αkgkTdk = 0.
Using Wolfe condition, αk is chosen such that

φ′(αk) ≥ c2 φ′(0), c2 ∈ (c1, 1)

∴ gk+1Tdk ≥ c2 gkTdk

∴ (gk+1 − gk)Tdk ≥ (c2 − 1)gkTdk
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Let g be Lipschitz continuous. That is, ∃ L, 0 < L < ∞ such
that

‖gk+1 − gk‖ ≤ L‖xk+1 − xk‖
But, we have, xk+1 = xk + αkdk.

∴ ‖gk+1 − gk‖ ≤ Lαk‖dk‖
∴ (gk+1 − gk)Tdk ≤ LαkdkTdk

But, using Wolfe conditions, (gk+1 − gk)Tdk ≥ (c2 − 1)gkTdk.
Therefore,

αk ≥ c2 − 1
L

gkTdk

‖dk‖2

∴ αkgkTdk ≤ c2 − 1
L

(gkTdk)2

‖dk‖2

∴ − c1α
kgkTdk ≥ c1

(1− c2)

L
(gkTdk)2

‖dk‖2

Shirish Shevade Numerical Optimization



−c1α
kgkTdk ≥ c1

(1− c2)

L
(gkTdk)2

‖dk‖2

Let θk be the angle between gk and dk. Therefore,

−c1α
kgkTdk ≥ c1

(1− c2)

L
‖gk‖2‖dk‖2cos2θk

‖dk‖2

∴ − c1α
kgkTdk ≥ c1

(1− c2)

L
‖gk‖2cos2θk

But, using Armijo’s conditions, −c1
∑∞

k=0 αkgkTdk < ∞.
Therefore,

c1
(1− c2)

L

∞∑
k=0

‖gk‖2cos2θk < ∞

Shirish Shevade Numerical Optimization



c1
(1− c2)

L

∞∑
k=0

‖gk‖2cos2θk < ∞

This implies
‖gk‖2cos2θk → 0.

If, at every iteration, dk is chosen such that,

gkTdk < 0 and cos2θk ≥ δ > 0,

then, we have,
lim

k→∞
‖gk‖ = 0.
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Global Convergence Theorem

Global Convergence Theorem [Zoutendijk]

Consider the problem to minimize f (x) over Rn. Suppose f is
bounded below in Rn, f ∈ C1 and the gradient, ∇f (= g) is
Lipschitz continuous. If at every iteration k of an optimization
algorithm, a descent direction dk is chosen such that
cos2 θk > δ(> 0) (where θk is the angle between dk and gk)
and αk satisfies Armijo-Wolfe conditions, then the optimization
algorithm either terminates in a finite number of iterations or

lim
k→∞

‖gk‖ = 0.
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Sufficient Decrease and Backtracking

Armijo-Goldstein Conditions: Choose αk such that

φ2(α
k) ≤ f (xk + αkdk) ≤ φ1(α

k)

where φ1(α) = f (xk) + c1αgkTdk, c1 ∈ (0, 1) and
φ2(α) = f (xk) + c2αgkTdk, c2 ∈ (c1, 1).
Use of backtracking line search with Armijo’s condition

Backtracking Line Search

(1) Choose α̂(> 0), ρ ∈ (0, 1), c1 ∈ (0, 1). Set α = α̂.
(2) while f (xk + αdk) > f (xk) + c1αgkTdk

α := ρα

endwhile
Output : αk = α
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Descent Directions

Descent direction set: {d ∈ Rn : gkTd < 0} where
gk = g(xk)
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Descent Directions

Let gk 6= 0 and dk = −Akgk where Ak is a symmetric
matrix
If Ak is positive definite,

gkTdk = −gkTAkgk < 0
⇒ dk is a descent direction

dk = −Akgk is a descent direction if Ak is positive definite.
Different optimization algorithms use different Ak
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How to find dk?
Consider the first order approximation to f (x) about xk:

f (x) ≈ f̂ (x)
∆
= f (xk) + gkT

(x− xk) = f (xk) + gkTd

Maximum decrease in f̂ (x) is possible by solving (P1):

mind gkTd
s.t. dTd = 1

Let θk be the angle between gk and d.

gkTd = ‖gk‖‖d‖ cos θk

= ‖gk‖ cos θk (∵ dTd = 1)

Therefore, the solution to the problem (P1) is dk = −gk/‖gk‖
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Steepest Descent Method

Uses the steepest descent direction, dk = −gk

Steepest Descent Algorithm

(1) Initialize x0 and ε, set k := 0.
(2) while ‖gk‖ > ε

(a) dk = −gk

(b) Find αk(> 0) along dk such that
(i) f (xk + αkdk) < f (xk)

(ii) αk satisfies Armijo-Wolfe conditions

(c) xk+1 = xk + αkdk

(d) k := k + 1
endwhile

Output : x∗ = xk, a stationary point of f (x).

Exact or Backtracking line search can be used in step 2(b)
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Example:
min f (x)

∆
= (x1 − 7)2 + (x2 − 2)2

g(x) =

(
2(x1 − 7)
2(x2 − 2)

)
, H(x) =

(
2 0
0 2

)
.

x∗ =

(
7
2

)
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Example:
min f (x)

∆
= (x1 − 7)2 + (x2 − 2)2
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Behaviour of the steepest descent algorithm (with exact line
search) applied to f (x) using x0 = (9, 4)T
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Example:
min f (x)

∆
= (x1 − 7)2 + (x2 − 2)2
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Behaviour of the steepest descent algorithm (with exact line
search) applied to f (x) using x0 = (5.5, 3)T
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Example:
min f (x)

∆
= 4x2

1 + x2
2 − 2x1x2

g(x) =

(
8x1 − 2x2

2x2 − 2x1

)
, H(x) =

(
8 −2
−2 2

)
.

x∗ =

(
0
0

)
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Example:
min f (x)

∆
= 4x2

1 + x2
2 − 2x1x2
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Behaviour of the steepest descent algorithm (with exact line
search) applied to f (x) using x0 = (−1,−2)T
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Example:
min f (x)

∆
= 4x2

1 + x2
2 − 2x1x2
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Behaviour of the steepest descent algorithm (with exact line
search) applied to f (x) using x0 = (1, 0)T
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2

x∗ =

(
1
1

)
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2
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Behaviour of the steepest descent algorithm (with backtracking
line search) applied to f (x) using x0 = (0.6, 0.6)T
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2

k xk
1 xk

2 f (xk) ‖xk − x∗‖ f (xk)− f (x∗)
0 0.6 0.6 5.92 0.5657 5.92
10 0.72 0.52 0.0792 0.5601 0.0782
100 0.78 0.61 0.0465 0.4414 0.0465
1000 0.9914 0.9828 7.45 ×10−5 0.0192 7.45 ×10−5

2028 0.9989 0.9978 1.81 ×10−6 0.0024 1.81 ×10−6

Table: Steepest descent method (with backtracking line search)
applied to Rosenbrock function, using x0 = (0.6, 0.6)T .
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2
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Behaviour of the steepest descent algorithm (with backtracking
line search) applied to f (x) using x0 = (−1.2, 1)T
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2

k xk
1 xk

2 f (xk) ‖xk − x∗‖ f (xk)− f (x∗)
0 -1.2 1.0 24.2 2.2 24.2
10 -1.00 1.01 4.02 2.0042 4.02
100 0.57 0.32 0.1867 0.80 0.1867
1000 0.99 0.97 1.99 ×10−4 0.0314 1.99 ×10−4

2300 0.9989 0.9979 1.11 ×10−6 0.0024 1.11 ×10−6

Table: Steepest descent method (with backtracking lines search)
applied to Rosenbrock function, using x0 = (−1.2, 1)T .
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