Numerical Optimization

Unconstrained Optimization

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Unconstrained Minimization Algorithm

- (1) Initialize \mathbf{x}^0 and ϵ , set k := 0.
- (2) while $||g(x^k)|| > \epsilon$
 - (a) Find a descent direction d^k for f at x^k
 - (b) Find $\alpha^k (> 0)$ along d^k such that
 - (i) $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$
 - (ii) α^k satisfies Armijo-Wolfe conditions
 - (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - (d) k := k + 1

endwhile

Output: $x^* = x^k$, a stationary point of f(x).

Does this algorithm converge?

Consider the problem,

$$\min_{\mathbf{x}} f(\mathbf{x})$$

- Let $f \in C^1$ and f be bounded below.
- An optimization algorithm to minimize f(x) generates a sequence, $\{x^k\}, k \ge 0$.
- Let the corresponding sequence of function values be $\{f^k\}, k \ge 0$.
- $f^{k+1} < f^k, \ k \ge 0$
- Stopping condition: $\|\boldsymbol{g}^k\| < \epsilon$

What can we say about $\|g^k\|$ as $k \to \infty$?

Suppose, at every iteration k of the optimization algorithm,

- The direction d^k is chosen such that $g^{kT}d^k < 0$
- Define $\phi(\alpha) = f(\mathbf{x}^k + \alpha \mathbf{d}^k)$. $\alpha^k (> 0)$ is chosen such that Armijo-Wolfe conditions are satisfied.

$$f^{k+1} \leq f^k + c_1 \alpha \mathbf{g}^{k^T} \mathbf{d}^k, \ c_1 \in (0,1)$$

 $\phi'(\alpha^k) \geq c_2 \phi'(0), \ c_2 \in (c_1,1)$

- $f^{k+1} < f^k \ \forall \ k \ge 0$
- $\bullet x^{k+1} = x^k + \alpha^k d^k$

Given: $f^{k+1} < f^k \ \forall \ k \ge 0$.

 $\{f^k\}$: Monotonically decreasing sequence, which is also bounded below.

$$\therefore \{f^k\} \to f^* \text{ where } f^* < \infty.$$

$$\therefore f^0 - f^k < \infty \ \forall \ k \ge 0$$

$$\therefore \lim_{k \to \infty} f^0 - f^k < \infty$$

Using Armijo's condition, α^{j} 's are chosen such that

$$f^{k+1} \leq f^k + c_1 \alpha^k \mathbf{g}^{kT} \mathbf{d}^k$$

$$\leq f^0 + c_1 \sum_{j=0}^k \alpha^j \mathbf{g}^{jT} \mathbf{d}^j$$

Therefore,

$$0 > f^0 - f^{k+1} \ge -c_1 \sum_{i=0}^k \alpha^i \boldsymbol{g}^{jT} \boldsymbol{d}^i$$

$$\therefore -c_1 \sum_{j=0}^{\infty} \alpha^j \mathbf{g}^{jT} \mathbf{d}^j < \infty$$

$$\therefore \sum_{j=0}^{\infty} \underbrace{-c_1}_{<0} \underbrace{\alpha^j}_{>0} \underbrace{\boldsymbol{g}^{jT} \boldsymbol{d}^j}_{<0} < \infty$$

Therefore, sum of infinitely many positive terms is *finite*. This implies, beyond certain iteration k, $\alpha^k \mathbf{g}^{kT} \mathbf{d}^k = 0$. Using Wolfe condition, α^k is chosen such that

$$\phi'(\alpha^k) \geq c_2 \phi'(0), c_2 \in (c_1, 1)$$

$$\therefore \boldsymbol{g}^{k+1^T} \boldsymbol{d}^k \geq c_2 \boldsymbol{g}^{k^T} \boldsymbol{d}^k$$

$$\therefore (\boldsymbol{g}^{k+1} - \boldsymbol{g}^k)^T \boldsymbol{d}^k \geq (c_2 - 1) \boldsymbol{g}^{k^T} \boldsymbol{d}^k$$

Let g be Lipschitz continuous. That is, $\exists L, 0 < L < \infty$ such that

$$\|\boldsymbol{g}^{k+1} - \boldsymbol{g}^k\| \le L\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^k\|$$

But, we have, $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$.

But, using Wolfe conditions, $(\mathbf{g}^{k+1} - \mathbf{g}^k)^T \mathbf{d}^k > (c_2 - 1)\mathbf{g}^{kT} \mathbf{d}^k$. Therefore.

$$\alpha^{k} \geq \frac{c_{2} - 1}{L} \frac{\boldsymbol{g}^{k^{T}} \boldsymbol{d}^{k}}{\|\boldsymbol{d}^{k}\|^{2}}$$

$$\therefore \alpha^{k} \boldsymbol{g}^{k^{T}} \boldsymbol{d}^{k} \leq \frac{c_{2} - 1}{L} \frac{(\boldsymbol{g}^{k^{T}} \boldsymbol{d}^{k})^{2}}{\|\boldsymbol{d}^{k}\|^{2}}$$

$$\therefore -c_{1} \alpha^{k} \boldsymbol{g}^{k^{T}} \boldsymbol{d}^{k} \geq c_{1} \frac{(1 - c_{2})}{L} \frac{(\boldsymbol{g}^{k^{T}} \boldsymbol{d}^{k})^{2}}{\|\boldsymbol{d}^{k}\|^{2}}$$

$$-c_1 \alpha^k {m g}^{k^T} {m d}^k \geq c_1 \frac{(1-c_2)}{L} \frac{({m g}^{k^T} {m d}^k)^2}{\|{m d}^k\|^2}$$

Let θ_k be the angle between \mathbf{g}^k and \mathbf{d}^k . Therefore,

$$-c_1 \alpha^k \boldsymbol{g}^{k^T} \boldsymbol{d}^k \geq c_1 \frac{(1-c_2)}{L} \frac{\|\boldsymbol{g}^k\|^2 \|\boldsymbol{d}^k\|^2 \cos^2 \theta_k}{\|\boldsymbol{d}^k\|^2}$$
$$\therefore -c_1 \alpha^k \boldsymbol{g}^{k^T} \boldsymbol{d}^k \geq c_1 \frac{(1-c_2)}{L} \|\boldsymbol{g}^k\|^2 \cos^2 \theta_k$$

But, using Armijo's conditions, $-c_1 \sum_{k=0}^{\infty} \alpha^k \mathbf{g}^{k^T} \mathbf{d}^k < \infty$. Therefore,

$$c_1 \frac{(1-c_2)}{L} \sum_{k=0}^{\infty} \|\boldsymbol{g}^k\|^2 \cos^2 \theta_k < \infty$$

$$c_1 \frac{(1-c_2)}{L} \sum_{k=0}^{\infty} \|\mathbf{g}^k\|^2 \cos^2 \theta_k < \infty$$

This implies

$$\|\boldsymbol{g}^k\|^2 \cos^2 \theta_k \to 0.$$

If, at every iteration, d^k is chosen such that,

$$\mathbf{g}^{k^T}\mathbf{d}^k < 0 \text{ and } \cos^2\theta_k \geq \delta > 0,$$

then, we have,

$$\lim_{k\to\infty}\|\boldsymbol{g}^k\|=0.$$

Global Convergence Theorem

Global Convergence Theorem [Zoutendijk]

Consider the problem to minimize f(x) over \mathbb{R}^n . Suppose f is bounded below in \mathbb{R}^n , $f \in \mathcal{C}^1$ and the gradient, $\nabla f(=g)$ is Lipschitz continuous. If at every iteration k of an optimization algorithm, a descent direction d^k is chosen such that $\cos^2 \theta_k > \delta(>0)$ (where θ_k is the angle between d^k and g^k) and α^k satisfies Armijo-Wolfe conditions, then the optimization algorithm either *terminates in a finite number of iterations* or

$$\lim_{k\to\infty}\|\boldsymbol{g}^k\|=0.$$

Sufficient Decrease and Backtracking

• Armijo-Goldstein Conditions: Choose α^k such that

$$\phi_2(\alpha^k) \le f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) \le \phi_1(\alpha^k)$$

where
$$\phi_1(\alpha) = f(\mathbf{x}^k) + c_1 \alpha \mathbf{g}^{kT} \mathbf{d}^k$$
, $c_1 \in (0, 1)$ and $\phi_2(\alpha) = f(\mathbf{x}^k) + c_2 \alpha \mathbf{g}^{kT} \mathbf{d}^k$, $c_2 \in (c_1, 1)$.

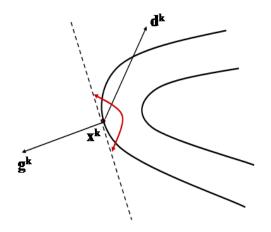
• Use of backtracking line search with Armijo's condition

Backtracking Line Search

- (1) Choose $\hat{\alpha}(>0), \rho \in (0,1), c_1 \in (0,1)$. Set $\alpha = \hat{\alpha}$.
- (2) while $f(\mathbf{x}^k + \alpha \mathbf{d}^k) > f(\mathbf{x}^k) + c_1 \alpha \mathbf{g}^{kT} \mathbf{d}^k$ $\alpha := \rho \alpha$

endwhile

Output: $\alpha^k = \alpha$



• Descent direction set: $\{ m{d} \in \mathbb{R}^n : m{g}^{k^T} m{d} < 0 \}$ where $m{g}^k = m{g}(m{x}^k)$

Descent Directions

- Let $g^k \neq 0$ and $d^k = -A^k g^k$ where A^k is a symmetric matrix
- If A^k is positive definite,

$$\mathbf{g}^{k^T} \mathbf{d}^k = -\mathbf{g}^{k^T} \mathbf{A}^k \mathbf{g}^k < 0$$

 $\Rightarrow \mathbf{d}^k$ is a descent direction

- $d^k = -A^k g^k$ is a descent direction if A^k is positive definite.
- Different optimization algorithms use different A^k

How to find d^k ?

Consider the first order approximation to f(x) about x^k :

$$f(\mathbf{x}) \approx \hat{f}(\mathbf{x}) \stackrel{\Delta}{=} f(\mathbf{x}^k) + \mathbf{g}^{k^T}(\mathbf{x} - \mathbf{x}^k) = f(\mathbf{x}^k) + \mathbf{g}^{k^T} \mathbf{d}$$

Maximum decrease in $\hat{f}(x)$ is possible by solving (P1):

$$\min_{\mathbf{d}} \quad \mathbf{g}^{k^T} \mathbf{d} \\
\text{s.t.} \quad \mathbf{d}^T \mathbf{d} = 1$$

Let θ_k be the angle between \mathbf{g}^k and \mathbf{d} .

$$\mathbf{g}^{k^T} \mathbf{d} = \|\mathbf{g}^k\| \|\mathbf{d}\| \cos \theta_k$$
$$= \|\mathbf{g}^k\| \cos \theta_k \ (\because \mathbf{d}^T \mathbf{d} = 1)$$

Therefore, the solution to the problem (**P1**) is $d^k = -g^k/||g^k||$

Steepest Descent Method

• Uses the steepest descent direction, $d^k = -g^k$

Steepest Descent Algorithm

- (1) Initialize x^0 and ϵ , set k := 0.
- (2) while $\|\boldsymbol{g}^k\| > \epsilon$
 - (a) $d^k = -g^k$
 - (b) Find $\alpha^k (>0)$ along d^k such that
 - (i) $f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$
 - (ii) α^k satisfies Armijo-Wolfe conditions
 - (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$
 - (d) k := k + 1

endwhile

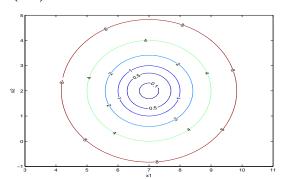
Output: $x^* = x^k$, a stationary point of f(x).

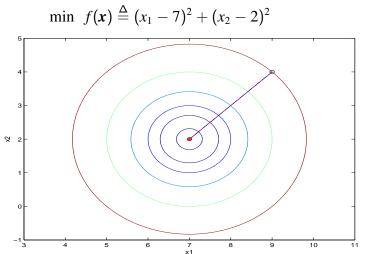
• Exact or Backtracking line search can be used in step 2(b)

min
$$f(x) \stackrel{\Delta}{=} (x_1 - 7)^2 + (x_2 - 2)^2$$

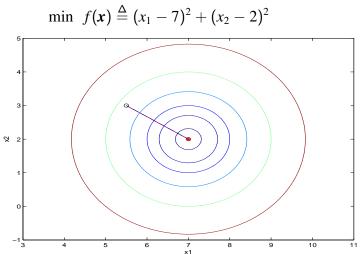
•
$$\mathbf{g}(\mathbf{x}) = \begin{pmatrix} 2(x_1 - 7) \\ 2(x_2 - 2) \end{pmatrix}$$
, $\mathbf{H}(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$.
• $\mathbf{x}^* = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$

•
$$x^* = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$$





Behaviour of the steepest descent algorithm (with exact line search) applied to f(x) using $x^0 = (9,4)^T$

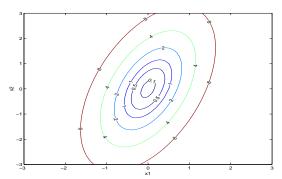


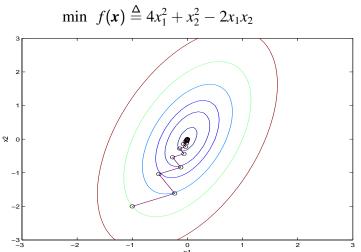
Behaviour of the steepest descent algorithm (with exact line search) applied to f(x) using $x^0 = (5.5, 3)^T$

$$\min \ f(\mathbf{x}) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$$

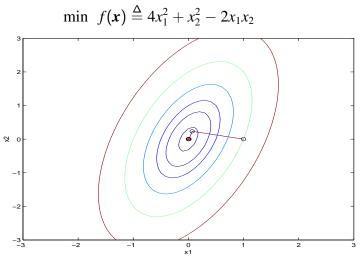
•
$$g(x) = \begin{pmatrix} 8x_1 - 2x_2 \\ 2x_2 - 2x_1 \end{pmatrix}$$
, $H(x) = \begin{pmatrix} 8 & -2 \\ -2 & 2 \end{pmatrix}$.
• $x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\bullet \ x^* = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$





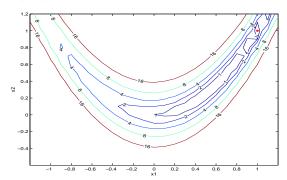
Behaviour of the steepest descent algorithm (with exact line search) applied to f(x) using $x^0 = (-1, -2)^T$

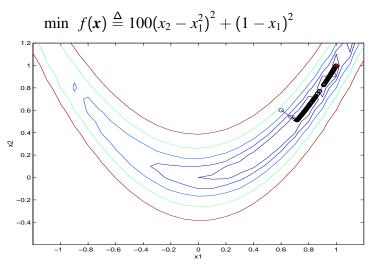


Behaviour of the steepest descent algorithm (with exact line search) applied to f(x) using $x^0 = (1,0)^T$

min
$$f(\mathbf{x}) \stackrel{\triangle}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

•
$$x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$





Behaviour of the steepest descent algorithm (with backtracking line search) applied to f(x) using $x^0 = (0.6, 0.6)^T$

min
$$f(\mathbf{x}) \stackrel{\Delta}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

k	x_1^k	x_2^k	$f(\mathbf{x}^k)$	$ x^k - x^* $	$f(\mathbf{x}^k) - f(\mathbf{x}^*)$
0	0.6	0.6	5.92	0.5657	5.92
10	0.72	0.52	0.0792	0.5601	0.0782
100	0.78	0.61	0.0465	0.4414	0.0465
1000	0.9914	0.9828	7.45×10^{-5}	0.0192	7.45×10^{-5}
2028	0.9989	0.9978	1.81×10^{-6}	0.0024	1.81×10^{-6}

Table: Steepest descent method (with backtracking line search) applied to Rosenbrock function, using $x^0 = (0.6, 0.6)^T$.

$$\min f(x) \stackrel{\triangle}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$\begin{array}{c} 1.2 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ -0.4 \\ \end{array}$$

Behaviour of the steepest descent algorithm (with backtracking line search) applied to f(x) using $x^0 = (-1.2, 1)^T$

min
$$f(\mathbf{x}) \stackrel{\Delta}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

k	x_1^k	x_2^k	$f(\mathbf{x}^k)$	$ x^k - x^* $	$f(\mathbf{x}^k) - f(\mathbf{x}^*)$
0	-1.2	1.0	24.2	2.2	24.2
10	-1.00	1.01	4.02	2.0042	4.02
100	0.57	0.32	0.1867	0.80	0.1867
1000	0.99	0.97	1.99×10^{-4}	0.0314	1.99×10^{-4}
2300	0.9989	0.9979	1.11×10^{-6}	0.0024	1.11×10^{-6}

Table: Steepest descent method (with backtracking lines search) applied to Rosenbrock function, using $x^0 = (-1.2, 1)^T$.