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Steepest Descent Method

@ Uses the steepest descent direction, d5, = —g*

Steepest Descent Algorithm

(1) Initialize x° and ¢, set k := 0.
(2) while ||gF|| > €
(a) d“ = —g*
(b) Find of(> 0) along d* such that
(i) fO* +akd') < f(x)
(ii) of satisfies Armijo-Wolfe conditions
(C) xk+l :xk +O4kdk
d) ki=k+1
endwhile
Output : x* = x* a stationary point of f(x).

@ Exact or Backtracking line search can be used in step 2(b)
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Example:

min £(x) £ (x — 7)> + (x2 — 2)?

o5~ (50 2) ) 1w =(53).
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Example:

Behaviour of the steepest descent algorithm (with exact line
search) applied to f(x) using x° = (9,4)7
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Example:
min £(x) 2 (x; — 7)% + (x, — 2)?

Behaviour of the steepest descent algorithm (with exact line
search) applied to f(x) using x° = (5.5, 3)7
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Example:
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Example:

min f(x)

Behaviour of the steepest descent algorithm (with exact line
search) applied to f(x) using x* = (-1, =2)7
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Example:
min f(x) 2 4x7 4 x5 — 2x1x,

Behaviour of the steepest descent algorithm (with exact line
search) applied to f(x) using x° = (1,0)7
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Example (Rosenbrock function):

min f(x) 2 100(x, — x%)2 +(1—x)
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Example (Rosenbrock function):

min f(x) 2 100(x, — )c%)2 +(1—x)°
1.2 T T T T T T T T T T //

. . . . . . . . . . .
-1 -0.8 -0.6 -0.4 -0.2 o] 0.2 0.4 0.6 0.8 1
x1

Behaviour of the steepest descent algorithm (with backtracking
line search) applied to f(x) using x° = (0.6,0.6)”

Shirish Shevade Numerical Optimization



Example (Rosenbrock function):

min f(x) 2 1000x, —22)° + (1 — x;)?

ox*:(i),f(x*):0

k x| x5 G| lg*]

0 0.6 0.6 5.92 0.5657 75.59

10 0.72 0.52 0.0792 0.5601 0.3938

100 | 0.78 0.61 0.0465 0.4414 0.2451

1000 | 0.9914 | 0.9828 | 7.45 x107> | 0.0192 0.0069

2028 | 0.9989 | 0.9978 | 1.81 x107° | 0.0024 | 9.97 x10~*

Table: Steepest descent method (with backtracking line search)
applied to Rosenbrock function, using
x" = (0.6,0.6)",4=.5,p=.3andc; = 1.0 x 1074,
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Example (Rosenbrock function):

min f(x) 2 100(x, — )c%)2 +(1—x)°

1.2 T T T T T T T
. //
@

L L L L L L L L L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Behaviour of the steepest descent algorithm (with backtracking
line search) applied to f(x) using x° = (—1.2,1)7
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Example (Rosenbrock function):

min f(x) 2 1000x, —22)° + (1 — x;)?

o x* = ( i ),f(x*):O

k x} x5 f(x") [x* —x*] [Fall

0 -1.2 1.0 24.2 2.2 232.87
10 -1.00 1.01 4.02 2.0042 7.69
100 0.57 0.32 0.1867 0.80 0.84
1000 | 0.99 0.97 1.99 x10~* 0.0314 0.014
2300 | 0.9989 | 0.9979 | 1.11 x10~° 0.0024 |9.63 x10~*

Table: Steepest descent method (with backtracking lines search)
applied to Rosenbrock function, using
¥ =(-12,D)",a=.5p=.3andc; =1.0x 1074
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Convergence of Steepest Descent Method: Quadratic case

Consider the problem:

. dEfl T T
Inin flx) = 2xHx c'x

where H is a symmetric positive-definite matrix.
e g(x)=Hx—c. -.x*=Hc
@ How does steepest descent method perform, when applied
to f(x)?

@ Assume that exact line search is used in each iteration
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What is the step length o at iteration k?
fx) = 3x"Hx —c"x. .. g" = g(x*) = Hx* — ¢
Define ¢(a) = f(x* + ad") = f(x* — agh).
Exact line search:

of = argmin,., ¢(a)

#(a)=0 = Vf(x'—ag")'(-g") =0
= (Hx*—aHg" —¢)'g" =0
= (¢ —aHg")'g" =0

Therefore,

T
. 8 g

gk T Hgk

T
WS gg ¢
T ngHgk
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At what rate does {x*} converge?

Define

E(x) = 1(xF —x*)TH(x* — x*). (E(x*) >0, if x* # x*)
1

Note that E(x*) = f(x*) + Ex*THx*.

—

constant
Define y* = x* — x*. . Hy* = g*.
Using

kT k
S gT g g~
gt Hg*

Relative decrease in E,
E(xk) o E(xk-H)
E(x*)
(xk _ x*)TH(xk _ x*) _ (xk—H _ x*)TH(xk—H _ x*)

ykT Hyk
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E(xt) — E(x*+)

E(x*)
_ (xk _ x*)TH(xk _ x*) o (xk+l _ x*)TH(xk+l o x*)
o ykTHyk
B zaknggk o akzngHgk
o ykTHyk
. . kT k
Substituting of = g THg Ve &t
E(x") —Ex™") (g"'g")?
E(x*) (¢""Hg")(g""H 'g")
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Kantorovich inequality

Let H € R™" be a symmetric positive definite matrix. Let \;
and ), be respectively the smallest and largest eigenvalues of
H. Then, for any x # 0,

(xTx)? o A
(xTHx)(xTH 'x) = (A + A\y)? )
Using this inequality,
E(x*) —E(") (g"'")’
E(x*) (¢"Hg")(g"' H 'g")
S 4\ N\,
N ()‘1 + )‘n)2

Therefore,

A=A\
E(x<1) < [ 2 LY Byt
e < (P B
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A — A )2
E k+1 < n 1 E k
e < (P) B

Therefore, E(x*) — 0 and x* — x*(H is positive definite).
With respect to E, the steepest descent method

@ converges linearly with convergence rate no greater than

2
A=A
)\n+>\]

@ Actual convergence rate depends upon x

A
Al

@ Convergence rate of the steepest descent method depends
on the condition number of H

0

@ Define the condition number of H,r =

e r = 1(circular contours) = convergence in one iteration
o r>> l1(elliptical contours) = convergence is slow

e For nonquadratic functions, rate of convergence to x*
depends on the condition number of H(x*)
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Example:

X2
N
T

Steepest descent algorithm (with exact line search) applied to
f(x) converges in one iteration from any starting point
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Example:

Steepest descent algorithm (with exact line search) applied to
f(x) requires many iterations before it converges
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Consider the problem to minimize

1
min f(x) £ ExTHx —c'x

where H is a symmetric positive definite matrix.
o Condition number of the Hessian matrix controls the
convergence rate of steepest descent method.
e Faster convergence if the Hessian matrix is 1
o Let H = LL" be the Cholesky decomposition of H

@ Definey = Lx. Therefore, the function f(x) is
transformed to the function A(y).

A

h(y) = f(L"y)
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h(y) = f(L™"y)
1
= —yI'L7'"HL Ty — "Ly

2
1

— EyTLflLLTLny . cTLny
1

= y—cL7y

@ The Hessian matrix of A(y) is I
o Let us apply steepest descent method in y-space

Y =y = V()
= Y = L7'VF(LTTY)
L—Tyk+1 — L—Tyk _ L—TL—lvf(L—Tyk)
. xk-H — xk o H*lvf(xk)
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