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Consider the problem to minimize

min f (x)
∆
=

1
2

xTHx− cTx

where H is a symmetric positive definite matrix.

Condition number of the Hessian matrix controls the
convergence rate of steepest descent method.
Faster convergence if the Hessian matrix is I
Let H = LLT be the Cholesky decomposition of H
Define y = LTx. Therefore, the function f (x) is
transformed to the function h(y).

h(y) ∆
= f (L−Ty)
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h(y) = f (L−Ty)

=
1
2

yTL−1HL−Ty− cTL−Ty

=
1
2

yTL−1LLTL−Ty− cTL−Ty

=
1
2

yTy− cTL−Ty

The Hessian matrix of h(y) is I
Let us apply steepest descent method in y-space

yk+1 = yk −∇h(yk)

= yk − L−1∇f (L−Tyk)

∴ L−Tyk+1 = L−Tyk − L−TL−1∇f (L−Tyk)

∴ xk+1 = xk −H−1∇f (xk)
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Newton Method
Consider the problem,

minx f (x)

Let f ∈ C2 and f be bounded below.
Use second order information to find a descent direction
At every iteration, use Taylor series to approximate f at xk

by a quadratic function and find the minimum of this
quadratic function to get xk+1

f (x) ≈ fq(x) = f (xk) + gkT
(x− xk) + 1

2(x− xk)THk(x− xk)
xk+1 = arg minx fq(x)

∇fq(x) = 0 ⇒ xk+1 = xk − (Hk)
−1gk (assuming Hk is

invertible)
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xk+1 = xk − (Hk)
−1gk is of the form, xk+1 = xk + αkdk

Classical Newton Method:
Newton Direction: dk

N = −(Hk)
−1gk

Step Length: αk = 1

Is dk
N a descent direction?

gkTdk
N = −gkT

(Hk)
−1gk < 0 if Hk is positive definite.

dk
N is a descent direction if Hk is positive definite

Consider the problem to minimize, f (x) = 1
2xTHx− cTx

where H is a symmetric positive definite matrix.
g(x) = 0 ⇒ x∗ = H−1c is a strict local minimum
Let x0 ∈ Rn be any point. g(x0) = Hx0 − c, H(x0) = H.
Using classical Newton method,
x1 = x0 −H−1(Hx0 − c) = H−1c = x∗.
Using classical newton method, the minimum of a strictly
convex quadratic function (with invertible Hessian matrix)

is attained in one iteration from any starting point.
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Classical Newton Algorithm
(1) Initialize x0 and ε, set k := 0.
(2) while ‖gk‖ > ε

(a) dk = −(HK)
−1gk

(b) αk = 1
(c) xk+1 = xk + αkdk

(d) k := k + 1

endwhile
Output : x∗ = xk, a stationary point of f (x).
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Example:
min f (x)

∆
= 4x2

1 + x2
2 − 2x1x2
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Classical Newton algorithm applied to f (x) converges to x∗ in
one iteration from any starting point

Shirish Shevade Numerical Optimization



Example:
min f (x)

∆
= 4x2

1 + x2
2 − 2x1x2
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Classical Newton algorithm applied to f (x) converges to x∗ in
one iteration from any starting point
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2
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Behaviour of classical Newton algorithm (with backtracking
line search) applied to f (x) using x0 = (−1.2, 1)T
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2

k xk
1 xk

2 f (xk) ‖gk‖ ‖xk − x∗‖
0 -1.2 1 24.2 232.86 2.2
1 -1.17 1.38 4.73 4.64 2.21
2 -1.00 0.97 4.01 17.54 2.00
3 -0.72 0.45 3.57 30.06 1.81
4 -0.62 0.37 2.63 6.34 1.74
5 -0.47 0.19 2.24 10.64 1.68
10 0.31 0.08 0.51 4.00 1.15
15 0.88 0.76 0.03 5.37 0.27
20 0.99 0.99 7.38×10−13 1.3×10−6 1.9×10−6

Table: Classical Newton algorithm (with backtracking line search)
applied to Rosenbrock function, using
x0 = (−1.2, 1.0)T , α̂ = 1, ρ = .3 and c1 = 1.0× 10−4.
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2
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Behaviour of classical Newton algorithm (with backtracking
line search) applied to f (x) using x0 = (0.6, 0.6)T
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Example (Rosenbrock function):

min f (x)
∆
= 100(x2 − x2

1)
2
+ (1− x1)

2

k xk
1 xk

2 f (xk) ‖gk‖ ‖xk − x∗‖
0 0.6 0.6 5.92 75.5947 0.57
1 0.59 0.35 0.17 0.80 0.77
2 0.71 0.49 0.10 4.64 0.58
3 0.79 0.61 0.05 1.65 0.44
4 0.89 0.78 0.02 4.18 0.25
5 0.92 0.85 0.01 0.40 0.17
9 0.99 0.99 5.76×10−13 2.77×10−6 1.69×10−6

Table: Classical Newton algorithm (with backtracking line search)
applied to Rosenbrock function, using
x0 = (0.6, 0.6)T , α̂ = 1, ρ = .3 and c1 = 1.0× 10−4.
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Classical Newton Algorithm
(1) Initialize x0 and ε, set k := 0.
(2) while ‖gk‖ > ε

(a) dk = −(HK)
−1gk

(b) αk = 1
(c) xk+1 = xk + αkdk

(d) k := k + 1

endwhile
Output : x∗ = xk, a stationary point of f (x).

Requires O(n3) computational effort for every iteration
(Step 2(a))
No guarantee that dk is a descent direction
No guarantee that f (xk+1) < f (xk) (no line search)
Sensitive to initial point (for non-quadratic functions)
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Consider the problem,

min
x∈R

log(ex + e−x)

f (x) = log(ex + e−x)
g(x) = ex−e−x

ex+e−x
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Consider the problem,

min
x∈R

log(ex + e−x)

f (x) = log(ex + e−x)

g(x) = ex−e−x

ex+e−x
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Classical Newton algorithm does not converge with this
initialization of x0
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Definition
An iterative optimization algorithm is said to be locally
convergent if for each solution x∗, there exists δ > 0 such that
for any initial point x0 ∈ B(x∗, δ), the algorithm produces a
sequence {xk} which converges to x∗.

Classical Newton algorithm is locally convergent

Let f : R → R, f ∈ C2.
Consider the problem:

min f (x)

Let x∗ ∈ R be such that g(x∗) = 0 and g′(x∗) > 0.
Assume that x0 is sufficiently close to x∗.
Suppose we apply classical Newton algorithm to minimize f (x).
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At k-th iteration,

xk+1 = xk − g(xk)

g′(xk)

∴ xk+1 − x∗ = xk − x∗ − g(xk)− g(x∗)
g′(xk)

= −
(
g(xk)− g(x∗) + g′(xk)(x∗ − xk)

)
g′(xk)

If we assume that f ∈ C3 (or g ∈ C2), then using truncated
Taylor series,

g(x∗) = g(xk) + g′(xk)(x∗ − xk) +
1
2

g′′(x̄k)(x∗ − xk)2

where x̄k ∈ LS(x∗, xk).
Therefore,

xk+1 − x∗ =
1
2

g′′(x̄k)

g′(xk)
(xk − x∗)2
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|xk+1 − x∗| = 1
2
|g′′(x̄k)|
|g′(xk)|

|xk − x∗|2

Suppose there exist α1 and α2 such that

|g′′(x̄k)| < α1 ∀ x̄k ∈ LS(x∗, xk) and
|g′(xk)| > α2 for xk sufficiently close to x∗,

then

|xk+1−x∗| ≤ α1

2α2
|xk−x∗|2 (order two convergence ifxk → x∗)

Note that

|xk+1 − x∗| ≤ α1

2α2
|xk − x∗|︸ ︷︷ ︸

required to be <1

|xk − x∗|

Shirish Shevade Numerical Optimization



If α1
2α2
|xk − x∗| < 1 ∀ k, then

|xk+1 − x∗| < |xk − x∗| ∀ k

How to choose α1 and α2?
At x∗, g(x∗) = 0, and g′(x∗) > 0
Since g′ ∈ C0, ∃ η > 0 3 g′(x) > 0 ∀ x ∈ (x∗ − η, x∗ + η)
Let

α1 = max
x∈(x∗−η,x∗+η)

|g′′(x)|

α2 = min
x∈(x∗−η,x∗+η)

g′(x)

Therefore, ∣∣∣∣1
2

g′′(x̄k)

g′(xk)

∣∣∣∣ ≤ α1

2α2
= β, say.

Preferable to choose x0 ∈ (x∗ − η, x∗ + η)
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Also, we want β|xk − x∗| < 1 ∀ k. That is,

|xk − x∗| < 1/β ∀ k
⇒ xk ∈ (x∗ − 1/β, x∗ + 1/β)

Therefore, choose x0 ∈ (x∗ − η, x∗ + η) ∩ (x∗ − 1/β, x∗ + 1/β)
Does {xk} converge to x∗ if x0 is chosen using this approach?
We have

|xk − x∗| ≤ β|xk−1 − x∗|2

∴ β|xk − x∗| ≤ (β|x0 − x∗|)2k

∴ |xk − x∗| ≤ 1
β

(β|x0 − x∗|︸ ︷︷ ︸
<1

)2k

Therefore,
lim

k→∞
|xk − x∗| = 0

Not a practical approach to choose x0
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Theorem
Let f : R → R, f ∈ C3. Let x∗ ∈ R be such that g(x∗) = 0 and
g′(x∗) > 0. Then, provided x0 is sufficiently close to x∗, the
sequence {xk} generated by classical Newton algorithm
converges to x∗ with an order of convergence two.

Initialization of x0 requires knowledge of x∗!
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Modified Newton Method

Modifications:
Given xk and dk

N = −(Hk)−1gk,
Fix some constant δ > 0.
Find the smallest ζk ≥ 0 such that the smallest eigenvalue
of the matrix (Hk + ζkI) is greater than δ.
Therefore, dk = −(Hk + ζkI)−1gk is a descent direction.
Given xk and dk = −(Hk + ζkI)−1gk, use line search
techniques to determine αk and xk+1

xk+1 = xk + αkdk
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Modified Newton Algorithm
(1) Initialize x0, ε and δ, set k := 0.
(2) while ‖gk‖ > ε

(a) Find the smallest ζk ≥ 0 such that the smallest eigenvalue
of Hk + ζkI is greater than δ

(b) Set dk = −(Hk + ζkI)−1gk

(c) Find αk(> 0) along dk such that
(i) f (xk + αkdk) < f (xk)

(ii) αk satisfies Armijo-Wolfe (or Armijo-Goldstein)
conditions

(d) xk+1 = xk + αkdk

(e) k := k + 1
endwhile

Output : x∗ = xk, a stationary point of f (x).

Modified Newton algorithm has global convergence
properties and has order of convergence equal to two
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