Numerical Optimization Unconstrained Optimization

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Consider the problem to minimize

min
$$f(\mathbf{x}) \stackrel{\Delta}{=} \frac{1}{2} \mathbf{x}^T \mathbf{H} \mathbf{x} - \mathbf{c}^T \mathbf{x}$$

where *H* is a symmetric positive definite matrix.

- *Condition number* of the Hessian matrix controls the convergence rate of steepest descent method.
- Faster convergence if the Hessian matrix is I
- Let $H = LL^T$ be the Cholesky decomposition of H
- Define $y = L^T x$. Therefore, the function f(x) is transformed to the function h(y).

$$h(\mathbf{y}) \stackrel{\Delta}{=} f(\boldsymbol{L}^{-T}\mathbf{y})$$

$$h(\mathbf{y}) = f(\mathbf{L}^{-T}\mathbf{y})$$

= $\frac{1}{2}\mathbf{y}^{T}\mathbf{L}^{-1}\mathbf{H}\mathbf{L}^{-T}\mathbf{y} - \mathbf{c}^{T}\mathbf{L}^{-T}\mathbf{y}$
= $\frac{1}{2}\mathbf{y}^{T}\mathbf{L}^{-1}\mathbf{L}\mathbf{L}^{T}\mathbf{L}^{-T}\mathbf{y} - \mathbf{c}^{T}\mathbf{L}^{-T}\mathbf{y}$
= $\frac{1}{2}\mathbf{y}^{T}\mathbf{y} - \mathbf{c}^{T}\mathbf{L}^{-T}\mathbf{y}$

- The Hessian matrix of $h(\mathbf{y})$ is \mathbf{I}
- Let us apply steepest descent method in *y*-space

$$y^{k+1} = y^k - \nabla h(y^k)$$

= $y^k - L^{-1} \nabla f(L^{-T} y^k)$
 $\therefore L^{-T} y^{k+1} = L^{-T} y^k - L^{-T} L^{-1} \nabla f(L^{-T} y^k)$
 $\therefore x^{k+1} = x^k - H^{-1} \nabla f(x^k)$

Newton Method

Consider the problem,

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$

- Let $f \in C^2$ and f be bounded below.
- Use second order information to find a descent direction
- At every iteration, use Taylor series to approximate f at x^k by a quadratic function and find the minimum of this quadratic function to get x^{k+1}

$$f(\mathbf{x}) \approx f_q(\mathbf{x}) = f(\mathbf{x}^k) + \mathbf{g}^{k^T}(\mathbf{x} - \mathbf{x}^k) + \frac{1}{2}(\mathbf{x} - \mathbf{x}^k)^T \mathbf{H}^k(\mathbf{x} - \mathbf{x}^k)$$
$$\mathbf{x}^{k+1} = \operatorname{arg\,min}_{\mathbf{x}} f_q(\mathbf{x})$$
$$\nabla f_q(\mathbf{x}) = 0 \implies \mathbf{x}^{k+1} = \mathbf{x}^k - (\mathbf{H}^k)^{-1} \mathbf{g}^k \quad \text{(assuming } \mathbf{H}^k \text{ is invertible})$$

 $\mathbf{x}^{k+1} = \mathbf{x}^k - (\mathbf{H}^k)^{-1} \mathbf{g}^k$ is of the form, $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$

- Classical Newton Method:
 - Newton Direction: $\boldsymbol{d}_N^k = -(\boldsymbol{H}^k)^{-1}\boldsymbol{g}^k$
 - Step Length: $\alpha^k = 1$
- Is d_N^k a descent direction? $g^{k^T} d_N^k = -g^{k^T} (H^k)^{-1} g^k < 0$ if H^k is positive definite. d_N^k is a descent direction if H^k is positive definite
- Consider the problem to minimize, $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T H\mathbf{x} \mathbf{c}^T \mathbf{x}$ where H is a symmetric positive definite matrix. $g(\mathbf{x}) = 0 \Rightarrow \mathbf{x}^* = H^{-1}\mathbf{c}$ is a strict local minimum Let $\mathbf{x}^0 \in \mathbb{R}^n$ be any point. $g(\mathbf{x}^0) = H\mathbf{x}^0 - \mathbf{c}$, $H(\mathbf{x}^0) = H$. Using classical Newton method,

$$x^{1} = x^{0} - H^{-1}(Hx^{0} - c) = H^{-1}c = x^{*}.$$

Using classical newton method, the minimum of a strictly convex quadratic function (with invertible Hessian matrix) is attained in one iteration from *any starting point*.

Classical Newton Algorithm

(1) Initialize \mathbf{x}^0 and ϵ , set k := 0. (2) while $\|\mathbf{g}^k\| > \epsilon$ (a) $\mathbf{d}^k = -(\mathbf{H}^K)^{-1}\mathbf{g}^k$ (b) $\alpha^k = 1$ (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$ (d) k := k+1endwhile

Output : $x^* = x^k$, a stationary point of f(x).

Example:

min $f(\mathbf{x}) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$

Classical Newton algorithm applied to f(x) converges to x^* in one iteration from any starting point

Example:

min $f(\mathbf{x}) \stackrel{\Delta}{=} 4x_1^2 + x_2^2 - 2x_1x_2$

Classical Newton algorithm applied to f(x) converges to x^* in one iteration from any starting point

Behaviour of classical Newton algorithm (with backtracking line search) applied to $f(\mathbf{x})$ using $\mathbf{x}^0 = (-1.2, 1)^T$

min
$$f(\mathbf{x}) \stackrel{\Delta}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

k	x_1^k	x_2^k	$f(\boldsymbol{x}^k)$	$\ oldsymbol{g}^k\ $	$\ \boldsymbol{x}^k - \boldsymbol{x}^*\ $
0	-1.2	1	24.2	232.86	2.2
1	-1.17	1.38	4.73	4.64	2.21
2	-1.00	0.97	4.01	17.54	2.00
3	-0.72	0.45	3.57	30.06	1.81
4	-0.62	0.37	2.63	6.34	1.74
5	-0.47	0.19	2.24	10.64	1.68
10	0.31	0.08	0.51	4.00	1.15
15	0.88	0.76	0.03	5.37	0.27
20	0.99	0.99	7.38×10^{-13}	1.3×10^{-6}	1.9×10^{-6}

Table: Classical Newton algorithm (with backtracking line search) applied to Rosenbrock function, using $\mathbf{x}^0 = (-1.2, 1.0)^T$, $\hat{\alpha} = 1$, $\rho = .3$ and $c_1 = 1.0 \times 10^{-4}$.

Behaviour of classical Newton algorithm (with backtracking line search) applied to $f(\mathbf{x})$ using $\mathbf{x}^0 = (0.6, 0.6)^T$

min
$$f(\mathbf{x}) \stackrel{\Delta}{=} 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

k	x_1^k	x_2^k	$f(\boldsymbol{x}^k)$	$\ oldsymbol{g}^k\ $	$\ \boldsymbol{x}^k - \boldsymbol{x}^*\ $
0	0.6	0.6	5.92	75.5947	0.57
1	0.59	0.35	0.17	0.80	0.77
2	0.71	0.49	0.10	4.64	0.58
3	0.79	0.61	0.05	1.65	0.44
4	0.89	0.78	0.02	4.18	0.25
5	0.92	0.85	0.01	0.40	0.17
9	0.99	0.99	5.76×10^{-13}	2.77×10^{-6}	1.69×10^{-6}

Table: Classical Newton algorithm (with backtracking line search) applied to Rosenbrock function, using $x^0 = (0.6, 0.6)^T$, $\hat{\alpha} = 1$, $\rho = .3$ and $c_1 = 1.0 \times 10^{-4}$.

Classical Newton Algorithm

(1) Initialize \mathbf{x}^0 and ϵ , set k := 0. (2) while $\|\mathbf{g}^k\| > \epsilon$ (a) $\mathbf{d}^k = -(\mathbf{H}^K)^{-1}\mathbf{g}^k$ (b) $\alpha^k = 1$ (c) $\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$ (d) k := k+1

endwhile

Output : $x^* = x^k$, a stationary point of f(x).

- Requires $O(n^3)$ computational effort for every iteration (Step 2(a))
- No guarantee that d^k is a descent direction
- *No guarantee* that $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$ (no line search)
- Sensitive to initial point (for non-quadratic functions)

Consider the problem,

Consider the problem,

Classical Newton algorithm does not converge with this initialization of x^0

Shirish Shevade Numerical Optimization

Definition

An iterative optimization algorithm is said to be locally convergent if for each solution x^* , there exists $\delta > 0$ such that for any initial point $x^0 \in B(x^*, \delta)$, the algorithm produces a sequence $\{x^k\}$ which converges to x^* .

• Classical Newton algorithm is locally convergent

Let $f : \mathbb{R} \to \mathbb{R}, f \in C^2$. Consider the problem:

min f(x)

Let $x^* \in \mathbb{R}$ be such that $g(x^*) = 0$ and $g'(x^*) > 0$. Assume that x^0 is *sufficiently* close to x^* . Suppose we apply classical Newton algorithm to minimize f(x). At *k*-th iteration,

$$\begin{aligned} x^{k+1} &= x^k - \frac{g(x^k)}{g'(x^k)} \\ \therefore x^{k+1} - x^* &= x^k - x^* - \frac{g(x^k) - g(x^*)}{g'(x^k)} \\ &= -\frac{(g(x^k) - g(x^*) + g'(x^k)(x^* - x^k))}{g'(x^k)} \end{aligned}$$

If we assume that $f \in C^3$ (or $g \in C^2$), then using truncated Taylor series,

$$g(x^*) = g(x^k) + g'(x^k)(x^* - x^k) + \frac{1}{2}g''(\bar{x}^k)(x^* - x^k)^2$$

where $\bar{x}^k \in LS(x^*, x^k)$. Therefore,

$$x^{k+1} - x^* = \frac{1}{2} \frac{g''(\bar{x}^k)}{g'(x^k)} (x^k - x^*)^2$$

$$|x^{k+1} - x^*| = \frac{1}{2} \frac{|g''(\bar{x}^k)|}{|g'(x^k)|} |x^k - x^*|^2$$

Suppose there exist α_1 and α_2 such that

$$|g''(\bar{x}^k)| < \alpha_1 \quad \forall \ \bar{x}^k \in LS(x^*, x^k) \text{ and}$$

 $|g'(x^k)| > \alpha_2 \text{ for } x^k \text{ sufficiently close to } x^*,$

then

$$|x^{k+1}-x^*| \le \frac{\alpha_1}{2\alpha_2} |x^k-x^*|^2$$
 (order two convergence if $x^k \to x^*$)

Note that

$$|x^{k+1} - x^*| \le \underbrace{\frac{\alpha_1}{2\alpha_2} |x^k - x^*|}_{\text{required to be } <1} |x^k - x^*|$$

If
$$\frac{\alpha_1}{2\alpha_2}|x^k - x^*| < 1 \ \forall k$$
, then

$$|x^{k+1} - x^*| < |x^k - x^*| \ \forall \ k$$

How to choose
$$\alpha_1$$
 and α_2 ?
At x^* , $g(x^*) = 0$, and $g'(x^*) > 0$
Since $g' \in C^0$, $\exists \eta > 0 \ \exists g'(x) > 0 \ \forall x \in (x^* - \eta, x^* + \eta)$
Let

$$\alpha_1 = \max_{x \in (x^* - \eta, x^* + \eta)} |g''(x)|$$

$$\alpha_2 = \min_{x \in (x^* - \eta, x^* + \eta)} g'(x)$$

Therefore,

$$\left|\frac{1}{2}\frac{g''(\bar{x}^k)}{g'(x^k)}\right| \le \frac{lpha_1}{2lpha_2} = eta, \text{ say.}$$

Preferable to choose $x^0 \in (x^* - \eta, x^* + \eta)$

Also, we want $\beta |x^k - x^*| < 1 \ \forall k$. That is,

$$\begin{aligned} |x^k - x^*| &< 1/\beta \;\forall \, k \\ \Rightarrow \; x^k \in (x^* - 1/\beta, x^* + 1/\beta) \end{aligned}$$

Therefore, choose $x^0 \in (x^* - \eta, x^* + \eta) \cap (x^* - 1/\beta, x^* + 1/\beta)$ Does $\{x^k\}$ converge to x^* if x^0 is chosen using this approach? We have

$$\begin{aligned} |x^{k} - x^{*}| &\leq \beta |x^{k-1} - x^{*}|^{2} \\ \therefore \beta |x^{k} - x^{*}| &\leq (\beta |x^{0} - x^{*}|)^{2^{k}} \\ \therefore |x^{k} - x^{*}| &\leq \frac{1}{\beta} (\underline{\beta |x^{0} - x^{*}|})^{2^{k}} \\ \leq 1 \end{aligned}$$

Therefore,

$$\lim_{k\to\infty}|x^k-x^*|=0$$

Not a practical approach to choose x^0

Theorem

Let $f : \mathbb{R} \to \mathbb{R}$, $f \in C^3$. Let $x^* \in \mathbb{R}$ be such that $g(x^*) = 0$ and $g'(x^*) > 0$. Then, provided x^0 is sufficiently close to x^* , the sequence $\{x^k\}$ generated by classical Newton algorithm converges to x^* with an order of convergence two.

Initialization of x^0 requires knowledge of x^* !

Modified Newton Method

Modifications:

- Given x^k and d^k_N = −(H^k)⁻¹g^k, Fix some constant δ > 0. Find the smallest ζ_k ≥ 0 such that the smallest eigenvalue of the matrix (H^k + ζ_kI) is greater than δ. Therefore, d^k = −(H^k + ζ_kI)⁻¹g^k is a descent direction.
- Given \mathbf{x}^k and $\mathbf{d}^k = -(\mathbf{H}^k + \zeta_k \mathbf{I})^{-1} \mathbf{g}^k$, use line search techniques to determine α^k and \mathbf{x}^{k+1}

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha^k \boldsymbol{d}^k$$

Modified Newton Algorithm

- (1) Initialize \mathbf{x}^0 , ϵ and δ , set k := 0.
- (2) while $\|\boldsymbol{g}^k\| > \epsilon$
 - (a) Find the smallest $\zeta_k \ge 0$ such that the smallest eigenvalue of $H^k + \zeta_k I$ is greater than δ

(b) Set
$$d^k = -(H^k + \zeta_k I)^{-1} g^k$$

(c) Find $\alpha^k (> 0)$ along d^k such that

(i)
$$f(\mathbf{x}^k + \alpha^k \mathbf{d}^k) < f(\mathbf{x}^k)$$

(ii) α^k satisfies Armijo-Wolfe (or Armijo-Goldstein) conditions

(d)
$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \mathbf{d}^k$$

(e)
$$k := k + 1$$

endwhile

Output : $x^* = x^k$, a stationary point of f(x).

• Modified Newton algorithm has global convergence properties and has order of convergence equal to two