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Constrained Optimization

@ Constrained Optimization Problem:
min f(x)

st. h(x) <0, j=1,...,1

e,-x):0, i = 1,...,m
xes

Inequality constraint functions: A; : R" — R

Equality constraint functions: e¢; : R" — R
Assume all functions (f, h;’s and e;’s) are sufficiently
smooth

o Feasible set:
X={xeS:hx)<0,ex)=0,j=1,....Li=
l,...,m}

e Given problem: Minimize f(x) subject tox € X

@ Assume X to be nonempty set in R”
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Local and Global Minimum

Definition

A point x* € X is said to be a global minimum point of f over X
if f(x) > f(x*) forallx € X. If f(x) > f(x*) for all

x € X, x # x*, then x* is said to be a strict global minimum
point of f over X.

Definition

A point x* € X is said to be a local minimum point of f over Xif
there exists € > 0 such that f(x) > f(x*) for all

x € XN B(x* ¢€). x* € Xis said to be a strict local minimum
point of f over Xif there exists ¢ > 0 such that f(x) > f(x*) for
allx € XN B(x*,€),x # x*.

Shirish Shevade Numerical Optimization



Convex Programming Problem

min f(x)
st hi(x) <0, j=1,...,1
ei(x):O, izl,...,m
xes

@ f(x) is a convex function

@ ¢;(x) is affine (e;(x) =alx +b;, i=1,...,m)
@ hj(x) is a convex function forj =1,...,!/

@ Sis aconvex set

@ Any local minimum is a global minimum

@ The set of global minima form a convex set
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Consider the problem:

min  f(x)
st. xeX

Different ways of solving this problem:

@ Reformulation to an unconstrained problem needs to be
done with care

@ Solve the constrained problem directly
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min  f(x)
st. xeX

@ An iterative optimization algorithm generates a sequence
{x*}1>0, which converges to a local minimum.

Constrained Minimization Algorithm

(1) Initialize x° € X,k := 0.
(2) while stopping condition is not satisfied at x*
(a) Find x**! € X such that f(x**1) < f(xk).
b) k:=k+1
endwhile
Output : x* = x*, a local minimum of f(x) over the set X.
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min  f(x)
st. xeX

Strict Local Minimum: There exists € > 0 such that
f(x") <f(x)Vx e XNB(x"¢), x #x"
At a local minimum of a constrained minimization problem:

the function does not decrease locally by moving along
directions which contain feasible points

@ How to convert this statement to an algebraic condition?

Shirish Shevade Numerical Optimization



min  f(x)
st. xeX

Definition

A vector d € R",d # 0 is said to be a feasible direction at
x € X if there exists d; > 0 such that x + ad € X for all
o€ (O, 51)

o Let F(x) = Set of feasible directions at x € X (w.r.t. X)

Definition

A vector d € R",d # 0 is said to be a descent direction at

x € X if there exists 0, > 0 such that f(x + ad) < f(x) for all
o€ (O, (52)

@ Let D(x) = Set of descent directions at x € X (w.r.t. f)
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min f(x)
st h(x) <0, j=1,...,1
ei(x):O, izl,...,m

x cR"

o X={xecR" :hx)<0,e(x)=0,j=1,...

1,...,m}

NNES

@ Atalocal minimum x* € X, the function does not decrease

by moving along feasible directions
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min  f(x)
st. xeX

Theorem

Let X be a nonempty set in R" and x* € X be a local minimum
of f over X. Then, F(x*) N D(x*) = ¢.

Proof.

Letx* € X be a local minimum.

By contradiction, assume that 3 a nonzerod € F(x*) N D(x*).
536>0 3 x +ad e XV ae(0,6)and

30, >0 > f(x*+ad) <f(x*)V ae(0,0).

Hence, 3x € B(x*,a) N X > f(x) < f(x*), for every

o€ (O, min(51 5 52))

This contradicts the assumption that x* is a local minimum. [
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min  f(x)
st. xeX

e x* € Xisalocal minimum = F(x*)ND(x*) = ¢

e Consider any x € X and assume f € C*

o lim,_. [EHDI®) _ Gp(x)Tg

o Vfi(x)'d <0 = f(x+ ad) <f(x) = disadescent
direction = d € D(x)

o Let D(x) = {d : Vf(x)'d < 0} C D(x)

@ x* € X is alocal minimum = F(x*) N D(x*) = ¢

o If F(x*) = R" (every direction in R" is locally feasible),
x* € X is a local minimum

= {d:Vf(x)d<0}=¢ = Vfx*)=0

Can we characterize J(x*) algebraically for a constrained
optimization problem?
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Consider the problem:

min f(x)
st hi(x) <0, j=1,...,1
x cR"

e Assume f, i, €C? j=1,...,1
e X={xeR": hx)<0, j=1,...,1}
@ Active constraints:

Alx) = {j : hj(x) = 0}

Lemma
Forany x € X,

Fx)E£{d: Vh(x)'d <0, je Alx)} C Fx)
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Lemma
Forany x € X,

Fx) 2 {d: Vhix)'d <0, je Alx)} C F(x)

Proof.

Suppose F(x) is nonempty and letd € F(x). Since
Vhi(x)'d <0V j e A(x),d is a descent direction for
h;, j € A(x) atx. That is,

36, >0 > hi(x + od) < h(x) =0V € A(x).
Further, /;(x) < 0V j ¢ A(x). Therefore,
303 >0 3 hi(x+ad) <0V ae(0,d), V¢ Alx)
Thus, x + ad € X V « € (0, min(dy, 03)),

and . d € F(x).
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min f(x)
st hi(x) <0, j=1,...,1
xR
LetX ={x e R": hj(x) <0, j=1,...,1}
Forany x € X, F(x) £ {d : Vhj(x)’d < 0, j e A(x)} C F(x)
and D(x) £ {d : Vf(x)"d < 0} C D(x).
x" € Xisalocal minimum = F(x*)ND(x")=¢
= Flx\NDx*)=o
x* € X is a local minimum = F(x*) N D(x*) = ¢

J

@ This is only a necessary condition for a local minimum

e Utility of this condition depends on the constraint
representation

@ Cannot be directly used for equality constrained problems
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min f(x)
st h(x) <0, j=1,...,1
x € R"

LetX ={x e R" : hi(x) <0, j=1,...,1}

x* € X is a local minimum
= ]':"(x*) N ZN?(x*) =¢
= {d: th(x*)Td <0,j€ AxM)}Nn{d: Vf(x*)'d <0} =¢
Vf(x*)"
Let A= | g, j e AR
o (1HAQXE*)]) xn
-.x* € X isalocal minimum = {d:Ad <0} =¢
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Farkas’ Lemma

Let A € R™*" and ¢ € R". Then, exactly one of the following
two systems has a solution:

(I) Ax <0,¢"x >0 for some x € R"
(I1) ATy =¢,y >0 forsomey € R".

Corollary

Let A € R™*". Then exactly one of the following systems has a
solution:

(I) Ax <0 forsomex € R"
(I) A"y =0,y > 0 for some nonzero y € R".

x* € X is alocal minimum = {d:Ad <0} =¢ =

3 X >0and \; > 0,j € A(x*) (not all X’s 0), such that

)\()Vf(x*) - ZjEA(x*) )\thj(x*) =0.
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x* € X isalocal minimum = {d:Ad <0} =¢ =
d X >0and \; > 0, j € A(x*) (not all A’s 0), such that
AoVF(xX") + 2 e agesy AV IHi(x™) = 0.

e Easy to satisfy these conditions if V;(x*) = 0 for some
jeAx*)or Vf(x*) =0
@ Regular point: A pointx* € X is said to be a regular point

if the gradient vectors, Vh;(x*), j € A(x*), are linearly
independent.

@ x* € X is aregular point = Xy # 0
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Letting \; = 0V j ¢ A(x*), we get the following conditions:

I
e

[
MV + > NVh(x")

J=1

Ajhj(x*) OV]:l,,l
N > 0Vj=0,...,1
()‘07)‘) 7£ (07 0)

where A" = (\(,..., \).

Shirish Shevade Numerical Optimization



Consider the problem:

min f(x)
st hi(x) <0, j=1,...,1
x € R"

Assume x* € X to be a regular point.
x*is alocal minimum = 3 A7, j=1,...,/such that

[
VFE) + > N Vi(x") = 0
j=1

Nhi(x*) = 0Vj=1,...,1
o> 0vj=1,....1
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Karush-Kuhn-Tucker (KKT) Conditions
Consider the problem:

min fx)
st hi(x) <0, j=1,...,1

E n
o X— (xR :hx) <0, j=1,....1}
o x*eX, A(x*)={j: h(x*) =0}

KKT necessary conditions (First Order) : If x* € X is alocal
minimum and a regular point, then there exists a unique vector

A=, )\;")T)lsuch that
VAE)+ ) N VhE) = 0
j=1

Nh(x®) = 0Vj=1,...,1
N> 0vji=1,...,1
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KKT necessary conditions (First Order) : If x* € X is alocal
minimum and a regular point, then there exists a unique vector
A=, )\;")T)lsuch that

VFE)+ ) N Vh(E) = 0
j=1

Nh(x®) = 0Vj=1,...,1
o> 0Vj=1,...,1

KKT point : (x*,A"), x* € X, A" >0

Lagrangian function : L(x,A) = f(x) + ZJZ-ZI Aih;(x)
VLx(x*,\*) =0

Aj : Lagrange multipliers , \; > 0

Ahi(x*) =0 : Complementary Slackness Condition

XN=0Vj¢ Ax?)
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min f(x)
st hi(x) <0, j=1,...,1
x € R"
@ At alocal minimum, active set is unknown

@ Need to investigate all possible active sets for finding KKT

points
Example:
min  x} +x3
S.t. X2 S 1
X1 +x>1
@ A KKT point can be a local maximum
Example:
min  —x?
s.t. x<0
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Constraint Qualification

@ Every local minimum need not be a KKT point
e Example [Kuhn and Tucker, 1951]!

min —X]
S.t. XQ—(I—X1)3 SO
X2 2 0

@ Linear Independence Constraint Qualification (LICQ) :
Vhi(x*), j € A(x*) are linearly independent
@ Mangasarian-Fromovitz Constraint Qualification (MFCQ)

{d:Vhi(x*)'d <0, je Ax*)} # ¢

"H.W. Kuhn and A.W. Tucker, Nonlinear Programming, in Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and
Probability, J. Neyman, ed., Berkeley, CA, 1951, University of California
Press, pp. 481-492.
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Consider the problem (CP):

min f(x)
st hi(x) <0, j=1,...,1
x eR?
@ Assumption: f, hj,j=1,...,1 are differentiable convex
functions

CP is a convex program

X={xeR':hx)<0, j=1,...,0}

Every local minimum of a convex program is a global
minimum

@ The set of all optimal solutions to a convex program is
convex

If x* € X is a regular point, then for x* to be a global minimum
of CP, first order KKT conditions are necessary and sufficient. }
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Proof.

Let (x*, A") be a KKT point. We need to show that x* is a
global minimum of CP. We use the convexity of f and A; to
prove this. Consider any x € X. For a convex function f,
fx) = flx) + V)" (x — x).
) = flx)+ ) Ahix)
J
> f(x") + V(") (x —x7)
+ 3 N (h(x") + Vi) (x — x7))
J

= x*) + Z)\f (x*)
HVF() ZA*W x")
= f(x")Vxe X = x* is a global minimum of CP

1
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Consider the problem (CP):

min f(x)
st hi(x) <0, j=1,...,1
x € R"
@ Assumption: f, hj,j=1,...,1 are convex functions

e X={xeR": hx)<0, j=1,...,1}
o Slater’s Constraint Qualification: There exists y € X such
that
hi(y) <0,j=1,...,1
@ Useful when the constraint functions 4; are convex
e For example, the following program does not satisfy
Slater’s constraint qualification:
min x|+ X
st (a+1)P2+x<1
(x — 1) +x <1
(0,0)7 is the global minimum; but it is not a KKT point.
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Consider the problem:

min f(x)
st. e(x)=0, i=1,...,m
x € R"
@ Assumption: f,e;,i =1,...,m are smooth functions

e X={xeR':¢x)<0, i=1,...,m}
oletxeX, A(x)={i:ex)=0}={1,...,m}

Definition

A vector d € R" is said to be a tangent of X at x if eitherd = 0
or there exists a sequence {x*} C X, x* # x V k such that

k
p xt—x d

SR P P T

The collection of all tangents of X at x is called the tangent set
atx and is denoted by 7 (x).
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min fx)
st. e(x)=0, i=1,...,m
x ¢ R"
e X={xeR":¢(x)=0, i=1,...,m}
@ Regular Point: A pointX € X is said to be a regular point if
Vei(x), i =1,...,mare linearly independent.

@ Ataregular pointx € X,

T(¥)={d:Ve(x)'d=0,i=1,...,m}
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o Letx* € X be a regular point and local extremum
(minimum or maximum) of the problem
e Consider any d € 7 (x*).
@ Let x(t) be any smooth curve such that
x(1)eX
o x(0) =x* x(0)=d
e Ja > Osuchthat e(x(r)) =0Vt € [—a,d]
@ x* is a regular point
= Tx*)={d:Ve,(x*)'d=0,i=1,...,m}
@ x*is a constrained local extremum

dff Dli=o =0= Vf(x*)'d=0.

If x* is a regular point w.r.t. the constraints ¢;(x) = 0,
i=1,...,mand x* is a local extremum point (a minimum or
maximum) of f subject to these constraints, then Vf(x*) is
orthogonal to the tangent set, 7 (x*).
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Theorem

Let x* € X be a regular point and be a local minimum. Then 3
w* € R" such that

V(") + ) uiVei(x) = 0.
i=1

Proof.

Lete(x) = (ei(x), ..., en(x)). x* € X is a local minimum.
- Ad Vf(x*)d < 0,Ve(x*)'d = 0} = ¢.

Let C; = {(y1,¥2) : y1 = Vf(x*)'d,y, = Ve(x*)'d} and
C = {(v1,y2) : y1 <0,y = 0}

Note that C; and C, are convex and C; N C, = ¢.

If C; and G, are nonempty convex sets in R" and C; N C, = ¢,
3 p € R"(p # 0) such that pu'x; > p'x, Vx; € Cp,x, € Cs.

Shirish Shevade Numerical Optimization



Proof. (continued)
Therefore, 3 (o, ) € R™*! such that

oV (") d+p" (Ve(x*)'d) > poyi+p'y2 Vd R, (y1,52) €

Letting y, = 0, we get o > 0.
Letting (y1.y2) = (0,0), we get

poVFE(x*)'d + p'(Ve(x*)'d) >0Vd e R

If we take d = — (o Vf(x*) + p' Ve(x*)), we get
—[|(1oVFf (x*) + p"Ve(x*))||* = 0.
Therefore,

poVF(x*) + pu' Ve(x*) = 0 where (uo, pt) # (0,0)

Note that, 1o > O since x* is a regular point.
Hence,
Vi(x*) + p*' Ve(x*) = 0
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Examples:

o
min X1 — 3X2
st. (m—1)2+x3=1
(.X] + 1)2+x% =1
(0,0)7 is the only feasible point; (0,0)” is not a regular
point.
2]

min X1+ xp
st. X 4+x3=1

local maximum : (\/%, \/li)T

L

local minimum - (—ﬂ, %)T

\S)
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General Nonlinear Programming Problems

min f(x)
st h(x)<0,j=1,...,1
e(x)=0,i=1,....m

o fih(j=1,...,0),e(i =1,...,m) are sufficiently smooth
o X={x:hix)<0,e(x)=0, j=1,....Li=1,...,m}
ex*eX
@ Active set of X at x™:
o Z=1{j:h(x*)=0}
o All the equality constraints, £ = {1,...,m}
Ax*)=TU&
@ Assumption: x* is a regular point. That is,
{Vhi(x*):je I} U{Vei(x*) :i € £} is aset of linearly
independent vectors
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min fx)
st h(x)<0,j=1,...,1
ei(x):O, i = 1,...,m

o X={x:hx)<0,ex)=0, j=1,....Li=1,...,m}
KKT necessary conditions (First Order) : If x* € X is a local

minimum and a regular point, then there exist unique vectors
AT e R, and p* € R™ such that

X)Wh +me =0

XNh(x*) = 0Vj=1,...,1I
N> 0Vji=1,...,1

J

e KKT Point: (x* € X, A" € R, u* € R") satisfying above
conditions
@ First order KKT conditions also satisfied at a local max
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Consider the problem (CP):

min f(x)
st h(x)<0,j=1,...,1
ei(x)=0,i=1,....,m
@ Assumption: f, hj,j=1,...,] are smooth convex
functions
e c¢i(x)=a'x;—b;,i=1,....m
@ CP is a convex programming problem
o X={x:hx)<0,ex)=0, j=1,....Li=1,...,m}
@ Assumption: Slater’s Constraint Qualification holds for X.

There exists y € X such that 4;(y) <0, j=1,...,1 J

o If X satisfies Slater’s Constraint Qualification, then the first
order KKT conditions are necessary and sufficient for a
global minimum of a convex programming problem CP
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Interpretation of Lagrange Multipliers

Consider the problem :

min fx)
st h(x)<0,j=1,...,1

X={x:hx)<0,j=1,...,L}

Letx* € X be a regular point and a local minimum

Let A(x*) = {j : hj(x*) = 0}

V) + Yyeae) N V) =0

Suppose the constraint /(x), j € A(x*) is perturbed to
() < [ VA )| (e > 0)

@ New problem:
min f(x)
S.t. ]’lj(X) 0, 17~--7la ]%J

j=
hi(x) < €| Vi (x|

Shirish Shevade Numerical Optimization



For the new problem, let x} be the solution.
o Assumption: A(x*) = A(x})
o For the constraint /;(x),
hi(x?) = By(x") = €l[Vis(x7)]|

7
oo —x*)Tth(x*) €IV is(x)]|

Q

e For other constraints, %;(x),j # J,

hi(x) = Bi(x") = 0
o = x) k()

\
o

@ Change in the objective function,

FE) — 1)~ (x—x) Vf()
= = 3 ) (Vi)
JEAX™)
— e Vi)
d

<

-
J

X=X*
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Consider the problem (NLP):

min f(x)
st. hi(x)<0,j=1,...,1
ei(x)=0,i=1,....,m

o Letf, h,e; € C*foreveryjandi.

o X={x:hix)<0,e(x)=0, j=1,....Li=1,...,m}
ex"cX
@ Active set of X at x™:
o T={j:hx") =0}
o All the equality constraints, £ = {1,...,m}
Ax*)=TU&
@ Assumption: x* is a regular point. That is,
{Vhij(x*):j € T} U{Ve;i(x*) : i € £} is a set of linearly
independent vectors
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Consider the problem (NLP):

min f(x)
st h(x) <0,j=1,...,1
e,-(x):O, = 1,...,1’1’1
@ Define the Lagrangian function,

LA, ) = f(6) + 350 Ay() + 37 piei(x)

KKT necessary conditions (Second Order) : If x* € X isa
local minimum of NLP and a regular point, then there exist
unique vectors A* € R/, and p* € R™ such that
VxL(x* A", p") = 0
/\}‘hj(x*) = 0vj=1,...,1
A > 0vi=1,...,1
and !
d"VyL(x*, X, u*)d >0

forall d > Vhi(x*)'d <0,j €7 and Ve;(x*)'d =0, i € £.

v
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KKT sufficient conditions (Second Order) : If there exist
x* € X, \" € R, and p* € R™ such that such that
VxL(x* A", p*) = 0
)\fhj(x*) = 0Vvj=1,...,1
A > 0Vji=1,...,1
and
d'ViL(x*, X, 1) >0

for all d # 0 such that

Vhi(x*)'d 0,j€Zand X' >0
Vhi(x*)'d 0,j€Z and X} =0
Vei(x*)Td = O, i € 5,

IN

then x* is a strict local minimum of NLP.
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Existence and Uniqueness of Lagrange Multipliers

Example:
min —X1
S.t. XZ—(I—X1)3 SO
X1 Z 0
X2 Z 0

e x* = (1,0)7 is the strict local minimum
e Cannot find a KKT point, (x*, A¥)

@ Linear Independence Constraint Qualification does not

hold at (1, O)T
@ Add an extra constraint

2% +x, <2

o Lagrange multipliers are not unique
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Importance of Constraint Set Representation

min  (x; — 2)% + (xa — 2)?

1
s.t. X —x<0
X1+ X2 S 6

X1 20,)(:220

Convex Programming Problem

Slater’s Constraint Qualification holds

First order KKT conditions are necessary and sufficient at
a global minimum

KKT point does not have x* = (2,4)"

Solution : x* = (3, 2)"

Replace the first inequality in the constraints by

(2 —x)' <0

(3,2)" is not regular for the new constraint representation!
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Example: Find the point on the parabola x, = £(x; — 1)* that is
closest to (1,2)7, in the Euclidean norm sense.

min ()Cl — 1)2 + (X2 — 2)2
.. (x; — 1) = 5x

o x* u*isa KKT point : x* = (1,0)" and p* = —
@ Satisfies second order sufficiency conditions

s

o x* = (1,0)" is a strict local minimum

@ Reformulation to an unconstrained optimization problem
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Unbounded problem
Example:
min  —0.2(x; — 3)? +x3

s.t. x4 >1

@ Unbounded objective function

@ (1,0)7 is a strict local minimum
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Example:
min x4+ x5 + 13
S.t. —x1+x=1
X343 —2x =1

e (1— \/E, 0,2— \/E)T is a strict local minimum.
o (14/2,0,2 4 +/2)" is a strict local maximum.

Shirish Shevade Numerical Optimization



