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Constrained Optimization

Constrained Optimization Problem:

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

ei(x) = 0, i = 1, . . . , m
x ∈ S

Inequality constraint functions: hj : Rn → R
Equality constraint functions: ei : Rn → R
Assume all functions (f , hj’s and ei’s) are sufficiently
smooth
Feasible set:
X = {x ∈ S : hj(x) ≤ 0, ei(x) = 0, j = 1, . . . , l, i =
1, . . . , m}
Given problem: Minimize f (x) subject to x ∈ X
Assume X to be nonempty set in Rn
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Local and Global Minimum

Definition
A point x∗ ∈ X is said to be a global minimum point of f over X
if f (x) ≥ f (x∗) for all x ∈ X. If f (x) > f (x∗) for all
x ∈ X, x 6= x∗, then x∗ is said to be a strict global minimum
point of f over X.

Definition
A point x∗ ∈ X is said to be a local minimum point of f over Xif
there exists ε > 0 such that f (x) ≥ f (x∗) for all
x ∈ X ∩ B(x∗, ε). x∗ ∈ X is said to be a strict local minimum
point of f over Xif there exists ε > 0 such that f (x) > f (x∗) for
all x ∈ X ∩ B(x∗, ε), x 6= x∗.
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Convex Programming Problem

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

ei(x) = 0, i = 1, . . . , m
x ∈ S

f (x) is a convex function
ei(x) is affine (ei(x) = aT

i x + bi, i = 1, . . . , m)
hj(x) is a convex function for j = 1, . . . , l
S is a convex set
Any local minimum is a global minimum
The set of global minima form a convex set
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Consider the problem:

min f (x)
s.t. x ∈ X

Different ways of solving this problem:

Reformulation to an unconstrained problem needs to be
done with care
Solve the constrained problem directly
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min f (x)
s.t. x ∈ X

An iterative optimization algorithm generates a sequence
{xk}k≥0, which converges to a local minimum.

Constrained Minimization Algorithm

(1) Initialize x0 ∈ X, k := 0.
(2) while stopping condition is not satisfied at xk

(a) Find xk+1 ∈ X such that f (xk+1) < f (xk).
(b) k := k + 1

endwhile
Output : x∗ = xk, a local minimum of f (x) over the set X.
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min f (x)
s.t. x ∈ X

Strict Local Minimum: There exists ε > 0 such that

f (x∗) < f (x) ∀ x ∈ X ∩ B(x∗, ε), x 6= x∗

At a local minimum of a constrained minimization problem:

the function does not decrease locally by moving along
directions which contain feasible points

How to convert this statement to an algebraic condition?
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min f (x)
s.t. x ∈ X

Definition
A vector d ∈ Rn, d 6= 0 is said to be a feasible direction at
x ∈ X if there exists δ1 > 0 such that x + αd ∈ X for all
α ∈ (0, δ1).

Let F(x) = Set of feasible directions at x ∈ X (w.r.t. X)

Definition
A vector d ∈ Rn, d 6= 0 is said to be a descent direction at
x ∈ X if there exists δ2 > 0 such that f (x + αd) < f (x) for all
α ∈ (0, δ2).

Let D(x) = Set of descent directions at x ∈ X (w.r.t. f )
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min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

ei(x) = 0, i = 1, . . . , m
x ∈ Rn

X = {x ∈ Rn : hj(x) ≤ 0, ei(x) = 0, j = 1, . . . , l, i =
1, . . . , m}
At a local minimum x∗ ∈ X, the function does not decrease
by moving along feasible directions
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min f (x)
s.t. x ∈ X

Theorem
Let X be a nonempty set in Rn and x∗ ∈ X be a local minimum
of f over X. Then, F(x∗) ∩ D(x∗) = φ.

Proof.
Let x∗ ∈ X be a local minimum.
By contradiction, assume that ∃ a nonzero d ∈ F(x∗) ∩ D(x∗).
∴ ∃ δ1 > 0 3 x∗ + αd ∈ X ∀ α ∈ (0, δ1) and
∃ δ2 > 0 3 f (x∗ + αd) < f (x∗) ∀ α ∈ (0, δ2).
Hence, ∃ x ∈ B(x∗, α) ∩ X 3 f (x) < f (x∗), for every
α ∈ (0, min(δ1, δ2)).
This contradicts the assumption that x∗ is a local minimum.
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min f (x)
s.t. x ∈ X

x∗ ∈ X is a local minimum ⇒ F(x∗) ∩ D(x∗) = φ

Consider any x ∈ X and assume f ∈ C2

limα→0+
f (x+αd)−f (x)

α
= ∇f (x)Td

∇f (x)Td < 0 ⇒ f (x + αd) < f (x) ⇒ d is a descent
direction ⇒ d ∈ D(x)

Let D̃(x) = {d : ∇f (x)Td < 0} ⊆ D(x)

x∗ ∈ X is a local minimum ⇒ F(x∗) ∩ D̃(x∗) = φ

If F(x∗) = Rn (every direction in Rn is locally feasible),
x∗ ∈ X is a local minimum
⇒ {d : ∇f (x∗)Td < 0} = φ ⇒ ∇f (x∗) = 0
Can we characterize F(x∗) algebraically for a constrained
optimization problem?
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Consider the problem:

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

x ∈ Rn

Assume f , hj ∈ C2, j = 1, . . . , l
X = {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , l}
Active constraints:

A(x) = {j : hj(x) = 0}

Lemma
For any x ∈ X,

F̃(x)
∆
= {d : ∇hj(x)Td < 0, j ∈ A(x)} ⊆ F(x)
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Lemma
For any x ∈ X,

F̃(x)
∆
= {d : ∇hj(x)Td < 0, j ∈ A(x)} ⊆ F(x)

Proof.

Suppose F̃(x) is nonempty and let d ∈ F̃(x). Since
∇hj(x)Td < 0 ∀ j ∈ A(x), d is a descent direction for
hj, j ∈ A(x) at x. That is,

∃ δ1 > 0 3 hj(x + αd) < hj(x) = 0 ∀ j ∈ A(x).

Further, hj(x) < 0 ∀ j /∈ A(x). Therefore,

∃ δ3 > 0 3 hj(x + αd) < 0 ∀ α ∈ (0, δ3), ∀j /∈ A(x)

Thus, x + αd ∈ X ∀ α ∈ (0, min(δ1, δ3)),
and ∴ d ∈ F(x).
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min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

x ∈ Rn

Let X = {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , l}.
For any x ∈ X, F̃(x)

∆
= {d : ∇hj(x)Td < 0, j ∈ A(x)} ⊆ F(x)

and D̃(x)
∆
= {d : ∇f (x)Td < 0} ⊆ D(x).

x∗ ∈ X is a local minimum ⇒ F(x∗) ∩ D(x∗) = φ

⇒ F̃(x∗) ∩ D̃(x∗) = φ

x∗ ∈ X is a local minimum ⇒ F̃(x∗) ∩ D̃(x∗) = φ

This is only a necessary condition for a local minimum
Utility of this condition depends on the constraint
representation
Cannot be directly used for equality constrained problems
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min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

x ∈ Rn

Let X = {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , l}

x∗ ∈ X is a local minimum
⇒ F̃(x∗) ∩ D̃(x∗) = φ

⇒ {d : ∇hj(x∗)Td < 0, j ∈ A(x∗)} ∩ {d : ∇f (x∗)Td < 0} = φ

Let A =


∇f (x∗)T

· · ·
∇hj(x∗)T , j ∈ A(x∗)

· · ·


(1+|A(x∗)|)×n

∴ x∗ ∈ X is a local minimum ⇒ {d : Ad < 0} = φ
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Farkas’ Lemma
Let A ∈ Rm×n and c ∈ Rn. Then, exactly one of the following
two systems has a solution:
(I) Ax ≤ 0, cTx > 0 for some x ∈ Rn

(II) ATy = c, y ≥ 0 for some y ∈ Rm.

Corollary

Let A ∈ Rm×n. Then exactly one of the following systems has a
solution:
(I) Ax < 0 for some x ∈ Rn

(II) ATy = 0, y ≥ 0 for some nonzero y ∈ Rm.

x∗ ∈ X is a local minimum ⇒ {d : Ad < 0} = φ ⇒

∃ λ0 ≥ 0 and λj ≥ 0, j ∈ A(x∗) (not all λ’s 0), such that

λ0∇f (x∗) +
∑

j∈A(x∗) λj∇hj(x∗) = 0.
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x∗ ∈ X is a local minimum ⇒ {d : Ad < 0} = φ ⇒

∃ λ0 ≥ 0 and λj ≥ 0, j ∈ A(x∗) (not all λ’s 0), such that

λ0∇f (x∗) +
∑

j∈A(x∗) λj∇hj(x∗) = 0.

Easy to satisfy these conditions if ∇hj(x∗) = 0 for some
j ∈ A(x∗) or ∇f (x∗) = 0
Regular point: A point x∗ ∈ X is said to be a regular point
if the gradient vectors, ∇hj(x∗), j ∈ A(x∗), are linearly
independent.
x∗ ∈ X is a regular point ⇒ λ0 6= 0

Shirish Shevade Numerical Optimization



Letting λj = 0 ∀ j /∈ A(x∗), we get the following conditions:

λ0∇f (x∗) +
l∑

j=1

λj∇hj(x∗) = 0

λjhj(x∗) = 0 ∀ j = 1, . . . , l
λj ≥ 0 ∀ j = 0, . . . , l

(λ0, λ) 6= (0, 0)

where λT = (λ1, . . . , λl).
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Consider the problem:

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

x ∈ Rn

Assume x∗ ∈ X to be a regular point.
x∗ is a local minimum ⇒ ∃ λ∗j , j = 1, . . . , l such that

∇f (x∗) +
l∑

j=1

λ∗j ∇hj(x∗) = 0

λ∗j hj(x∗) = 0 ∀ j = 1, . . . , l
λ∗j ≥ 0 ∀ j = 1, . . . , l
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Karush-Kuhn-Tucker (KKT) Conditions

Consider the problem:

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

x ∈ Rn

X = {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , l}
x∗ ∈ X, A(x∗) = {j : hj(x∗) = 0}

KKT necessary conditions (First Order) : If x∗ ∈ X is a local
minimum and a regular point, then there exists a unique vector
λ∗(= (λ∗1, . . . , λ

∗
l )

T) such that

∇f (x∗) +
l∑

j=1

λ∗j ∇hj(x∗) = 0

λ∗j hj(x∗) = 0 ∀ j = 1, . . . , l
λ∗j ≥ 0 ∀ j = 1, . . . , l
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KKT necessary conditions (First Order) : If x∗ ∈ X is a local
minimum and a regular point, then there exists a unique vector
λ∗(= (λ∗1, . . . , λ

∗
l )

T) such that

∇f (x∗) +
l∑

j=1

λ∗j ∇hj(x∗) = 0

λ∗j hj(x∗) = 0 ∀ j = 1, . . . , l
λ∗j ≥ 0 ∀ j = 1, . . . , l

KKT point : (x∗, λ∗), x∗ ∈ X, λ∗ ≥ 0
Lagrangian function : L(x, λ) = f (x) +

∑l
j=1 λjhj(x)

∇Lx(x∗, λ∗) = 0
λj : Lagrange multipliers , λj ≥ 0
λ∗j hj(x∗) = 0 : Complementary Slackness Condition
λ∗j = 0 ∀ j /∈ A(x∗)
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min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

x ∈ Rn

At a local minimum, active set is unknown
Need to investigate all possible active sets for finding KKT
points
Example:

min x2
1 + x2

2
s.t. x2 ≤ 1

x1 + x2 ≥ 1

A KKT point can be a local maximum
Example:

min −x2

s.t. x ≤ 0
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Constraint Qualification

Every local minimum need not be a KKT point
Example [Kuhn and Tucker, 1951]1

min −x1

s.t. x2 − (1− x1)
3 ≤ 0

x2 ≥ 0

Linear Independence Constraint Qualification (LICQ) :
∇hj(x∗), j ∈ A(x∗) are linearly independent
Mangasarian-Fromovitz Constraint Qualification (MFCQ)

{d : ∇hj(x∗)Td < 0, j ∈ A(x∗)} 6= φ

1H.W. Kuhn and A.W. Tucker, Nonlinear Programming, in Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and
Probability, J. Neyman, ed., Berkeley, CA, 1951, University of California
Press, pp. 481–492.
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Consider the problem (CP):

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

x ∈ Rn

Assumption: f , hj, j = 1, . . . , l are differentiable convex
functions
CP is a convex program
X = {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , l}
Every local minimum of a convex program is a global
minimum
The set of all optimal solutions to a convex program is
convex

If x∗ ∈ X is a regular point, then for x∗ to be a global minimum
of CP, first order KKT conditions are necessary and sufficient.
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Proof.
Let (x∗, λ∗) be a KKT point. We need to show that x∗ is a
global minimum of CP. We use the convexity of f and hj to
prove this. Consider any x ∈ X. For a convex function f ,
f (x) ≥ f (x∗) +∇f (x∗)T(x− x∗).

f (x) ≥ f (x) +
∑

j

λ∗j hj(x)

≥ f (x∗) +∇f (x∗)T(x− x∗)

+
∑

j

λ∗j (hj(x∗) +∇hj(x∗)T(x− x∗))

= (f (x∗) +
∑

j

λ∗j hj(x∗)

+(∇f (x∗) +
∑

j

λ∗j ∇hj(x∗))T(x− x∗)

= f (x∗) ∀ x ∈ X ⇒ x∗ is a global minimum of CP

Shirish Shevade Numerical Optimization



Consider the problem (CP):

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

x ∈ Rn

Assumption: f , hj, j = 1, . . . , l are convex functions
X = {x ∈ Rn : hj(x) ≤ 0, j = 1, . . . , l}
Slater’s Constraint Qualification: There exists y ∈ X such
that

hj(y) < 0, j = 1, . . . , l

Useful when the constraint functions hj are convex
For example, the following program does not satisfy
Slater’s constraint qualification:

min x1 + x2

s.t. (x1 + 1)2 + x2
2 ≤ 1

(x1 − 1)2 + x2
2 ≤ 1

(0, 0)T is the global minimum; but it is not a KKT point.
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Consider the problem:

min f (x)
s.t. ei(x) = 0, i = 1, . . . , m

x ∈ Rn

Assumption: f , ei, i = 1, . . . , m are smooth functions
X = {x ∈ Rn : ei(x) ≤ 0, i = 1, . . . , m}
Let x ∈ X, A(x) = {i : ei(x) = 0} = {1, . . . , m}

Definition
A vector d ∈ Rn is said to be a tangent of X at x if either d = 0
or there exists a sequence {xk} ⊂ X, xk 6= x ∀ k such that

xk → x,
xk − x
‖xk − x‖

→ d
‖d‖

.

The collection of all tangents of X at x is called the tangent set
at x and is denoted by T (x).
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min f (x)
s.t. ei(x) = 0, i = 1, . . . , m

x ∈ Rn

X = {x ∈ Rn : ei(x) = 0, i = 1, . . . , m}
Regular Point: A point x̄ ∈ X is said to be a regular point if
∇ei(x̄), i = 1, . . . , m are linearly independent.
At a regular point x̄ ∈ X,

T (x̄) = {d : ∇ei(x̄)Td = 0, i = 1, . . . , m}
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Let x∗ ∈ X be a regular point and local extremum
(minimum or maximum) of the problem
Consider any d ∈ T (x∗).
Let x(t) be any smooth curve such that

x(t) ∈ X
x(0) = x∗, ẋ(0) = d
∃ a > 0 such that e(x(t)) = 0 ∀ t ∈ [−a, a]

x∗ is a regular point
⇒ T (x∗) = {d : ∇ei(x∗)Td = 0, i = 1, . . . , m}
x∗ is a constrained local extremum
⇒ d

dt
f (x(t))|t=0 = 0 ⇒ ∇f (x∗)Td = 0.

If x∗ is a regular point w.r.t. the constraints ei(x) = 0,
i = 1, . . . , m and x∗ is a local extremum point (a minimum or
maximum) of f subject to these constraints, then ∇f (x∗) is
orthogonal to the tangent set, T (x∗).
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Theorem
Let x∗ ∈ X be a regular point and be a local minimum. Then ∃
µ∗ ∈ Rm such that

∇f (x∗) +
m∑

i=1

µ∗i ∇ei(x∗) = 0.

Proof.
Let e(x) = (e1(x), . . . , em(x)). x∗ ∈ X is a local minimum.
∴ {d : ∇f (x∗)Td < 0,∇e(x∗)Td = 0} = φ.
Let C1 = {(y1, y2) : y1 = ∇f (x∗)Td, y2 = ∇e(x∗)Td} and
C2 = {(y1, y2) : y1 < 0, y2 = 0}
Note that C1 and C2 are convex and C1 ∩ C2 = φ.

If C1 and C2 are nonempty convex sets in Rn and C1 ∩ C2 = φ,
∃ µ ∈ Rn(µ 6= 0) such that µTx1 ≥ µTx2 ∀ x1 ∈ C1, x2 ∈ C2.
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Proof. (continued)

Therefore, ∃ (µ0, µ) ∈ Rm+1 such that

µ0∇f (x∗)Td+µT(∇e(x∗)Td) ≥ µ0y1+µTy2 ∀ d ∈ Rn, (y1, y2) ∈ C2

Letting y2 = 0, we get µ0 ≥ 0.
Letting (y1, y2) = (0, 0), we get

µ0∇f (x∗)Td + µT(∇e(x∗)Td) ≥ 0 ∀ d ∈ Rn

If we take d = −(µ0∇f (x∗) + µT∇e(x∗)), we get
−‖(µ0∇f (x∗) + µT∇e(x∗))‖2 ≥ 0.
Therefore,

µ0∇f (x∗) + µT∇e(x∗) = 0 where (µ0, µ) 6= (0, 0)

Note that, µ0 > 0 since x∗ is a regular point.
Hence,

∇f (x∗) + µ∗T∇e(x∗) = 0

�
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Examples:

1

min x1 − 3x2

s.t. (x1 − 1)2 + x2
2 = 1

(x1 + 1)2 + x2
2 = 1

(0, 0)T is the only feasible point; (0, 0)T is not a regular
point.

2

min x1 + x2

s.t. x2
1 + x2

2 = 1

local maximum : ( 1√
2
, 1√

2
)T

local minimum : (− 1√
2
,− 1√

2
)T
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General Nonlinear Programming Problems

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

ei(x) = 0, i = 1, . . . , m

f , hj(j = 1, . . . , l), ei(i = 1, . . . , m) are sufficiently smooth
X = {x : hj(x) ≤ 0, ei(x) = 0, j = 1, . . . , l; i = 1, . . . , m}
x∗ ∈ X
Active set of X at x∗:

I = {j : hj(x∗) = 0}
All the equality constraints, E = {1, . . . , m}

A(x∗) = I ∪ E
Assumption: x∗ is a regular point. That is,
{∇hj(x∗) : j ∈ I} ∪ {∇ei(x∗) : i ∈ E} is a set of linearly
independent vectors
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min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

ei(x) = 0, i = 1, . . . , m

X = {x : hj(x) ≤ 0, ei(x) = 0, j = 1, . . . , l; i = 1, . . . , m}

KKT necessary conditions (First Order) : If x∗ ∈ X is a local
minimum and a regular point, then there exist unique vectors
λ∗ ∈ Rl

+ and µ∗ ∈ Rm such that

∇f (x∗) +
l∑

j=1

λ∗j ∇hj(x∗) +
m∑

i=1

µ∗i ∇ei(x∗) = 0

λ∗j hj(x∗) = 0 ∀ j = 1, . . . , l
λ∗j ≥ 0 ∀ j = 1, . . . , l

KKT Point: (x∗ ∈ X, λ∗ ∈ Rl
+, µ∗ ∈ Rm) satisfying above

conditions
First order KKT conditions also satisfied at a local max
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Consider the problem (CP):

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

ei(x) = 0, i = 1, . . . , m

Assumption: f , hj, j = 1, . . . , l are smooth convex
functions
ei(x) = aTxi − bi, i = 1, . . . , m
CP is a convex programming problem
X = {x : hj(x) ≤ 0, ei(x) = 0, j = 1, . . . , l; i = 1, . . . , m}
Assumption: Slater’s Constraint Qualification holds for X.

There exists y ∈ X such that hj(y) < 0, j = 1, . . . , l

If X satisfies Slater’s Constraint Qualification, then the first
order KKT conditions are necessary and sufficient for a
global minimum of a convex programming problem CP
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Interpretation of Lagrange Multipliers

Consider the problem :

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

X = {x : hj(x) ≤ 0, j = 1, . . . , l; }
Let x∗ ∈ X be a regular point and a local minimum
Let A(x∗) = {j : hj(x∗) = 0}
∇f (x∗) +

∑
j∈A(x∗) λ∗j ∇hj(x∗) = 0

Suppose the constraint h̃j(x), j ∈ A(x∗) is perturbed to
h̃j(x) ≤ ε‖∇h̃j(x∗)‖ (ε > 0)

New problem:

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l, j 6= j̃

h̃j(x) ≤ ε‖∇h̃j(x∗)‖

Shirish Shevade Numerical Optimization



For the new problem, let x∗ε be the solution.
Assumption: A(x∗) = A(x∗ε)
For the constraint h̃j(x),

h̃j(x
∗
ε)− h̃j(x

∗) = ε‖∇h̃j(x
∗)‖

∴ (x∗ε − x∗)T∇h̃j(x
∗) ≈ ε‖∇h̃j(x

∗)‖

For other constraints, hj(x), j 6= j̃,

hj(x∗ε)− hj(x∗) = 0
∴ (x∗ε − x∗)T∇hj(x∗) = 0

Change in the objective function,

f (x∗ε)− f (x∗) ≈ (x∗ε − x∗)T∇f (x∗)

= −
∑

j∈A(x∗)

(x∗ε − x∗)T(λ∗j ∇hj(x∗)

= −λ∗j̃ ε‖∇h̃j(x
∗)‖

∴
df
dε

∣∣∣∣x=x∗
∝ −λ∗j̃
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Consider the problem (NLP):

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

ei(x) = 0, i = 1, . . . , m
Let f , hj, ei ∈ C2 for every j and i.
X = {x : hj(x) ≤ 0, ei(x) = 0, j = 1, . . . , l; i = 1, . . . , m}
x∗ ∈ X
Active set of X at x∗:

I = {j : hj(x∗) = 0}
All the equality constraints, E = {1, . . . , m}

A(x∗) = I ∪ E
Assumption: x∗ is a regular point. That is,
{∇hj(x∗) : j ∈ I} ∪ {∇ei(x∗) : i ∈ E} is a set of linearly
independent vectors

Shirish Shevade Numerical Optimization



Consider the problem (NLP):

min f (x)
s.t. hj(x) ≤ 0, j = 1, . . . , l

ei(x) = 0, i = 1, . . . , m
Define the Lagrangian function,
L(x, λ, µ) = f (x) +

∑l
j=1 λjhj(x) +

∑m
i=1 µiei(x)

KKT necessary conditions (Second Order) : If x∗ ∈ X is a
local minimum of NLP and a regular point, then there exist
unique vectors λ∗ ∈ Rl

+ and µ∗ ∈ Rm such that
∇xL(x∗, λ∗, µ∗) = 0

λ∗j hj(x∗) = 0 ∀ j = 1, . . . , l
λ∗j ≥ 0 ∀ j = 1, . . . , l

and
dT∇2

xL(x∗, λ∗, µ∗)d ≥ 0

for all d 3 ∇hj(x∗)Td ≤ 0, j ∈ I and ∇ei(x∗)Td = 0, i ∈ E .
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KKT sufficient conditions (Second Order) : If there exist
x∗ ∈ X, λ∗ ∈ Rl

+ and µ∗ ∈ Rm such that such that
∇xL(x∗, λ∗, µ∗) = 0

λ∗j hj(x∗) = 0 ∀ j = 1, . . . , l
λ∗j ≥ 0 ∀ j = 1, . . . , l

and
dT∇2

xL(x∗, λ∗, µ∗)d > 0

for all d 6= 0 such that

∇hj(x∗)Td = 0, j ∈ I and λ∗j > 0

∇hj(x∗)Td ≤ 0, j ∈ I and λ∗j = 0

∇ei(x∗)Td = 0, i ∈ E ,

then x∗ is a strict local minimum of NLP.
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Existence and Uniqueness of Lagrange Multipliers

Example:
min −x1

s.t. x2 − (1− x1)
3 ≤ 0

x1 ≥ 0
x2 ≥ 0

x∗ = (1, 0)T is the strict local minimum
Cannot find a KKT point, (x∗, λ∗)
Linear Independence Constraint Qualification does not
hold at (1, 0)T

Add an extra constraint

2x1 + x2 ≤ 2

Lagrange multipliers are not unique
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Importance of Constraint Set Representation

min (x1 − 9
4)

2 + (x2 − 2)2

s.t. x2
1 − x2 ≤ 0

x1 + x2 ≤ 6
x1 ≥ 0, x2 ≥ 0

Convex Programming Problem
Slater’s Constraint Qualification holds
First order KKT conditions are necessary and sufficient at
a global minimum
KKT point does not have x∗ = (2, 4)T

Solution : x∗ = ( 3
2 ,

9
4)

T

Replace the first inequality in the constraints by

(x2
1 − x2)

3 ≤ 0

(3
2 ,

9
4)

T is not regular for the new constraint representation!
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Example: Find the point on the parabola x2 = 1
5(x1 − 1)2 that is

closest to (1, 2)T , in the Euclidean norm sense.

min (x1 − 1)2 + (x2 − 2)2

s.t. (x1 − 1)2 = 5x2

x∗, µ∗ is a KKT point : x∗ = (1, 0)T and µ∗ = −4
5

Satisfies second order sufficiency conditions
x∗ = (1, 0)T is a strict local minimum
Reformulation to an unconstrained optimization problem
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Unbounded problem

Example:
min −0.2(x1 − 3)2 + x2

2
s.t. x2

1 + x2
2 ≥ 1

Unbounded objective function
(1, 0)T is a strict local minimum
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Example:
min x2

1 + x2
2 + 1

4x2
3

s.t. −x1 + x3 = 1
x2

1 + x2
2 − 2x1 = 1

(1−
√

2, 0, 2−
√

2)T is a strict local minimum.
(1 +

√
2, 0, 2 +

√
2)T is a strict local maximum.
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