NPTEL Course on Numerical Optimization Module 7 : Constrained Optimization Practice Problems

- 1. Consider the problem of finding the point on the parabola $x_2 = \frac{1}{5}(x_1 1)^2$ that is closest, in the Euclidean norm sense, to $(1, 2)^T$.
 - (a) Use KKT conditions to solve this problem.
 - (b) By eliminating the variable x_1 , convert this problem into an unconstrained optimization problem and solve it.
- 2. Find the rectangle of a given perimeter that has greatest area by solving the first order necessary conditions. Verify that the second order sufficiency conditions are satisfied.
- 3. Consider the constraint set, $\{(x_1, x_2) \in \mathbb{R}^2 : x_2 (x_1 1)^2 \leq 0, x_1 \geq 0, x_2 \geq 0\}$. Is the point $(1, 0)^T$ feasible and regular?
- 4. Maximize $14x_1 x_1^2 + 6x_2 x_2^2 + 7$ subject to $x_1 + x_2 \le 2$ and $x_1 + 2x_2 \le 3$.
- 5. Minimize $x_1^2 + x_2^2 + \frac{1}{4}x_3^2$ subject to $x_1 x_3 + 1 = 0$ and $x_1^2 + x_2^2 = 2x_1$.