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Transportation Problem

min
x

∑
ij cijxij

s.t.
∑3

j=1 xij ≤ ai, i = 1, 2∑2
i=1 xij ≥ bj, j = 1, 2, 3

xij ≥ 0 ∀ i, j

ai : Capacity of the plant Fi
bj : Demand of the outlet Rj
cij : Cost of shipping one unit
of product from Fi to Rj
xij: Number of units of the
product shipped from Fi to Rj
(variables)
The objective is to minimize∑

ij cijxij∑3
j=1 xij ≤ ai, i = 1, 2

(constraints)∑2
i=1 xij ≥ bj, j = 1, 2, 3

(constraints)
xij ≥ 0 ∀ i, j (constraints)
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The Diet Problem: Find the most economical diet that satisfies
minimum nutritional requirements.

Number of food items: n
Number of nutritional ingredient: m
Each person must consume at least bj units of nutrient j per
day
Unit cost of food item i: ci

Each unit of food item i contains aji units of the nutrient j
Number of units of food item i consumed: xi

Constraint corresponding to the nutrient j:

aj1x1 + aj2x2 + . . . + ajnxn ≥ bj, xi ≥ 0 ∀ i

Cost:
c1x1 + c2x2 + . . . + cnxn
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Problem:

min c1x1 + c2x2 + . . . + cnxn

s.t. aj1x1 + aj2x2 + . . . + ajnxn ≥ bj ∀ j
xi ≥ 0 ∀ i

Given: c = (c1, . . . , cn)
T , A = (a1| . . . |an), b = (b1, . . . , bm)T .

Linear Programming Problem (LP):

min cTx
s.t. Ax ≥ b

x ≥ 0

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm.

Assumption: m ≤ n, rank(A) = m
Linear Constraints can be of the form Ax = b or Ax ≤ b
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Constraint (Feasible) Set:

Inequality constraint of the type {x : aTx ≤ b} or
{x : aTx ≥ b} denotes a half space
Equality constraint, {x : aTx = b}, represents an affine
space
Non-negativity constraint, x ≥ 0
Constraint set of an LP is a convex set

Polyhedral Set

X = {x : Ax ≤ b, x ≥ 0}

Polytope: A bounded polyhedral set
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Consider the constraint set in R2:

{(x1, x2) : x1 + x2 ≤ 2, x1 ≤ 1, x1 ≥ 0, x2 ≥ 0}
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Consider the constraint set in R2:

{(x1, x2) : x1 ≥ 1, x2 ≥ x1}
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Feasible set can be a singleton set

Feasible Set = {(x1, x2) : x1 + x2 = 2,−x1 + x2 = 1} = {A}
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Feasible set can be empty!

Feasible Set = {(x1, x2) : x1 + x2 ≥ 2, x1 + x2 ≤ 1} = φ
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Definition
Let X be a convex set. A point x ∈ X is said to be an extreme
point (corner point or vertex) of X if x cannot be represented
as a strict convex combination of two distinct points in X.

Extreme Points: A, B, C and D.
E is not an extreme point.
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Extreme Point: A
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Constraint Set:
X = {(x1, x2) : x1 + x2 ≤ 2, x1 ≤ 1, x1 ≥ 0, x2 ≥ 0}
4 constraints in R2

Two constraints are binding (active) at every extreme point
Fewer than two constraints are binding at other points
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Consider the constraint set: X = {x : Ax ≤ b, x ≥ 0} where
A ∈ Rm×n and rank(A) = m.

m + n hyperplanes associated with m + n halfspaces
m + n halfspaces define X
An extreme point lies on n linearly independent defining
hyperplanes of X
If X is nonempty, the set of extreme points of X is not
empty and has a finite number of points.
An edge of X is formed by intersection of n− 1 linearly
independent hyperplanes
Two extreme points of X are said to be adjacent if the line
segment joining them is an edge of X

Shirish Shevade Numerical Optimization



For example, B and C are adjacent points
Adjacent extreme points have n− 1 common binding
linearly independent hyperplanes

Shirish Shevade Numerical Optimization



Remarks:
Consider the constraint set: X = {x : Ax = b, x ≥ 0} where
A ∈ Rm×n and rank(A) = m.

Let x̄ ∈ X be an extreme point of X
m equality constraints are active at x̄
Therefore, n− m additional hyperplanes (from the
non-negativity constraints) are active at x̄
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Geometric Solution of a LP:

min cTx
s.t. Ax ≥ b

x ≥ 0
where A ∈ Rm×n, c ∈ Rn and b ∈ Rm.
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Example:

min −2x1 − x2

s.t. x1 + x2 ≤ 5
x1 + 2x2 ≤ 6

x1, x2 ≥ 0
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Example:

min cTx
s.t. x ∈ X
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Consider a linear programming problem LP:

min cTx
s.t. aT

i x (≤, =,≥) bi, i = 1, . . . , m
x ≥ 0

Let X = {x : aT
i x (≤, =,≥) bi, i = 1, . . . , m, x ≥ 0}.

Remarks:
X is a closed convex set
The set of optimal solutions is a convex set.
The linear program may have no solution or a unique
solution or infinitely many solutions.
If x∗ is an optimal solution to LP, then x∗ must be a
boundary point of X. If z = cTx∗, then {x : cTx = z} is a
supporting hyperplane to X.

If X is compact and if there is an optimal solution to LP,
then at least one extreme point of X is an optimal solution
to the linear programming problem.
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LP in Standard Form:

min cTx
s.t. Ax = b

x ≥ 0

where A ∈ Rm×n and rank(A) = m.

Assumption: Feasible set is non-empty
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Any linear program can be converted to the Standard Form.

(a) max cTx = −min −cTx
(b) Constraint of the type

aTx ≤ b, x ≥ 0

can be written as

aTx + y = b
x ≥ 0
y ≥ 0
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(c) Constraint of the type

aTx ≥ b, x ≥ 0

can be written as

aTx− z = b
x ≥ 0
z ≥ 0

(d) Free variables (xi ∈ R) can be defined as

xi = x+
i − x−i , x+

i ≥ 0, x−i ≥ 0
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Example:
min x1 − 2x2 − 3x3

s.t. x1 + 2x2 + x3 ≤ 14
x1 + 2x2 + 4x3 ≥ 12

x1 − x2 + x3 = 2
x1, x2 unrestricted

x3 ≤ −3Write the constraints as equality constraints
x1 + 2x2 + x3 + x4 = 14, x4 ≥ 0
x1 + 2x2 + 4x3 − x5 = 12, x5 ≥ 0

Define new variables x+
1 , x−1 , x+

2 , x−2 and x′3 such that
x1 = x+

1 − x−1 , where x+
1 ≥ 0, x−1 ≥ 0

x2 = x+
2 − x−2 , where x+

2 ≥ 0, x−2 ≥ 0
x′3 = −3− x3 so that x′3 ≥ 0
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Therefore, the program
min x1 − 2x2 − 3x3

s.t. x1 + 2x2 + x3 ≤ 14
x1 + 2x2 + 4x3 ≥ 12

x1 − x2 + x3 = 2
x1, x2 unrestricted

x3 ≤ −3

can be converted to the standard form:

min x+
1 − x−1 − 2(x+

2 − x−2 ) + 3(3 + x′3)
s.t. x+

1 − x−1 + 2(x+
2 − x−2 )− x′3 + x4 = 17

x+
1 − x−1 + 2(x+

2 − x−2 )− 4x′3 − x5 = 24
x+

1 − x−1 − x+
2 + x−2 − x′3 = 5

x+
1 , x−1 , x+

2 , x−2 , x′3, x4, x5 ≥ 0
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Consider the linear program in standard form (SLP):

min cTx
s.t. Ax = b

x ≥ 0

where A ∈ Rm×n, rank(A) = rank(A|b) = m.
Let B ∈ Rm×m be formed using m linearly independent
columns of A.
Therefore, the system of equations, Ax = b can be written as,

(B N)

(
xB

xN

)
= b.

Letting xN = 0, we get

BxB = b ⇒ xB = B−1b. (xB : Basic Variables)

(xB 0)T : Basic solution w.r.t. the basis matrix B
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Basic Feasible Solution
If xB ≥ 0, then (xB 0)T is called a basic feasible solution of

Ax = b
x ≥ 0

w.r.t. the basis matrix B.

Theorem
Let X = {x : Ax = b, x ≥ 0}. x is an extreme point of X if
and only if x is a basic feasible solution of

Ax = b
x ≥ 0.
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Proof.
(a) Let x be a basic feasible solution of Ax = b, x ≥ 0.

Therefore, x = (x1, . . . , xm︸ ︷︷ ︸
≥0

, 0, . . . , 0︸ ︷︷ ︸
n−m

). Let B = (a1|a2| . . . |am)

where a1, . . . , am are linearly independent. So,

x1a1 + . . . + xmam = b.

Suppose x is not an extreme point of X.
Let y, z ∈ X, y 6= z and x = αy + (1− α)z, 0 < α < 1.
Since y, z ≥ 0, we have

ym+1 = . . . = yn = 0
zm+1 = . . . = zn = 0

}
and

y1a1 + . . . + ymam = b
z1a1 + . . . + zmam = b

Since a1, . . . , am are linearly independent, x = y = z, a
contradiction. So, x is an extreme point of X.
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Proof.(continued)
(b) Let x be an extreme point of X.

x ∈ X ⇒ Ax = b, x ≥ 0.
There exist n linearly independent constraints active at x.

m active constraints associated with Ax = b.
n− m active constraints associated with n− m
non-negativity constraints

x is the unique solution of Ax = b, xN = 0.

Ax = b ⇒ BxB + NxN = b ⇒ xB = B−1b ≥ 0

Therefore, x = (xB xN)T is a basic feasible solution. �

Number of basic solutions ≤
(

n
m

)
Enough to search the finite set of vertices of X to get an optimal
solution Shirish Shevade Numerical Optimization



Theorem
Let X be non-empty and compact constraint set of a linear
program. Then, an optimal solution to the linear program exists
and it is attained at a vertex of X.

Proof.
Objective function, cTx, of the linear program is continuous
and the constraint set is compact. Therefore, by Weierstrass’
Theorem, optimal solution exists.
The set of vertices, {x1, . . . , xk}, of X is finite.
Therefore, X is the convex hull of x1, . . . , xk.
Hence, for every x ∈ X, x =

∑k
i=1 αixi where

αi ≥ 0,
∑k

i=1 αi = 1.
Let z∗ = min1≤i≤k cTxi. Therefore, for any x ∈ X,
z = cTx =

∑k
i=1 αicTxi ≥ z∗

∑k
i=1 αi = z∗. So, the minimum

value of cTx is attained at a vertex of X.
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Consider the constraints:

x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0
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The given constraints

x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0

can be written in the form, Ax = b, x ≥ 0:

x1 +x2 + x3 = 2
x1 +x4 = 1
x1, x2, x3, x4 ≥ 0

Let A =

(
1 1 1 0
1 0 0 1

)
= (a1|a2|a3|a4) and b =

(
2
1

)
.
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A =

(
1 1 1 0
1 0 0 1

)
= (a1|a2|a3|a4) and b =

(
2
1

)
.

(1) B = (a1|a2) =

(
1 1
1 0

)
xB = (x1 x2)

T = B−1b = (1 1)T and xN = (x3 x4)
T = (0 0)T .

x = (xB xN)T corresponds to the vertex C.
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A =

(
1 1 1 0
1 0 0 1

)
= (a1|a2|a3|a4) and b =

(
2
1

)
.

(2) B = (a1|a3) =

(
1 1
1 0

)
xB = (x1 x3)

T = B−1b = (1 1)T and xN = (x2 x4)
T = (0 0)T .

x = (xB xN)T corresponds to the vertex B.
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A =

(
1 1 1 0
1 0 0 1

)
= (a1|a2|a3|a4) and b =

(
2
1

)
.

(3) B = (a1|a4) =

(
1 0
1 1

)
xB = (x1 x4)

T = B−1b = (2 − 1)T and xN = (x2 x3)
T = (0 0)T .

x = (xB xN)T is not a basic feasible point
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A =

(
1 1 1 0
1 0 0 1

)
= (a1|a2|a3|a4) and b =

(
2
1

)
.

(4) B = (a2|a4) =

(
1 0
0 1

)
xB = (x2 x4)

T = B−1b = (2 1)T and xN = (x1 x3)
T = (0 0)T .

x = (xB xN)T corresponds to the vertex D.
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A =

(
1 1 1 0
1 0 0 1

)
= (a1|a2|a3|a4) and b =

(
2
1

)
.

(5) B = (a3|a4) =

(
1 0
0 1

)
xB = (x3 x4)

T = B−1b = (2 1)T and xN = (x1 x2)
T = (0 0)T .

x = (xB xN)T corresponds to the vertex A.
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Example:

min −3x1 − x2

s.t. x1 + x2 ≤ 2
x1 ≤ 1

x1, x2 ≥ 0
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