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Transportation Problem
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x; > 0Vi,j
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@ a; : Capacity of the plant Fi
@ b; : Demand of the outlet Rj

@ ¢;; : Cost of shipping one unit
of product from Fi to Rj

@ x;: Number of units of the
product shipped from Fi to Rj
(variables)

@ The objective is to minimize
i Ciii

3
OZJ X <a;, i=1,2

(constraints)
2 .
>, x;>b;,j=1273
(constramts)

@ x; > 0V i,j(constraints)
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The Diet Problem: Find the most economical diet that satisfies
minimum nutritional requirements.

@ Number of food items: n

@ Number of nutritional ingredient: m

@ Each person must consume at least b; units of nutrient j per
day

@ Unit cost of food item i: ¢;
@ Each unit of food item i contains aj; units of the nutrient j

@ Number of units of food item i consumed: x;

Constraint corresponding to the nutrient j:
axi + apXx) + ...+ AjnXp Z bj, Xi Z Ovi

Cost:
C1X1 +Coxp 4+ ...+ Xy
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Problem:

min cixy+cxp 4. Fepx,
s.t.apxy +apx, + ...+ aux, > b Vj
Xi Z oOvi

Given: ¢ = (c1,...,¢,)", A = (ai]...|a,),b = (by,...,b,)".
Linear Programming Problem (LP):

min  ¢'x
st. Ax>b
x>0

where A € R™" ¢ € R"and b € R".
o Assumption: m < n,rank(A) =m

@ Linear Constraints can be of the form Ax =bor Ax <b
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Constraint (Feasible) Set:
@ Inequality constraint of the type {x :a’x < b} or
{x :a’x > b} denotes a half space

e Equality constraint, {x :a’x = b}, represents an affine
space

@ Non-negativity constraint, x > 0

o Constraint set of an LP is a convex set
Polyhedral Set

X={x:Ax<b, x>0}

Polytope: A bounded polyhedral set
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Consider the constraint set in R?:

— - xl = 1

—~Feasible Set
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Consider the constraint set in R?:

X

x1=1f

/

555

Unhounded
Feasible Set
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Feasible set can be a singleton set

/

5

Feasible Set = {(x1,x,) : x1 +x =2, —x; +x, = 1} = {A}
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Feasible set can be empty!

N &

xtx=1

Feasible Set = {(x;,x2) :x1 +x > 2,51+ <1} =¢
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Definition

Let X be a convex set. A point x € X is said to be an extreme
point (corner point or vertex) of X if x cannot be represented
as a strict convex combination of two distinct points in X.

I

_

A IB ‘\ 5
Extreme Points: A, B, C and D.
E is not an extreme point.
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Unbounded
Feasible Set

i

Extreme Point: A
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o Constraint Set:
X={(x,x):x+x<2,x;<1,x; >0,x, >0}
@ 4 constraints in R?

X

A B n
@ Two constraints are binding (active) at every extreme point
e Fewer than two constraints are binding at other points
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Consider the constraint set: X = {x : Ax < b,x > 0} where
A € R™" and rank(A) = m.

@ m + n hyperplanes associated with m + n halfspaces

@ m + n halfspaces define X

@ An extreme point lies on 7 linearly independent defining
hyperplanes of X

o If X is nonempty, the set of extreme points of X is not
empty and has a finite number of points.

@ Anedge of X is formed by intersection of n — 1 linearly
independent hyperplanes

@ Two extreme points of X are said to be adjacent if the line
segment joining them is an edge of X
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T N

o For example, B and C are adjacent points

@ Adjacent extreme points have n — 1 common binding
linearly independent hyperplanes
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Remarks:
Consider the constraint set: X = {x : Ax = b,x > 0} where
A € R™ and rank(A) = m.

@ Let X € X be an extreme point of X

e m equality constraints are active at X

@ Therefore, n — m additional hyperplanes (from the
non-negativity constraints) are active at x
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Geometric Solution of a LP:

min  ¢’x
s.t. Ax>b
x>0

where A € R™" ¢ € R"and b € R™.

I

Feasible Set

L]

/r x

<
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c’x=0
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c’x=0
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cIx=0

Shirish Shevade Numerical Optimization



cIx=a

~ 90
o
~o X
-~
\"h
—~
< \
cIx=0

Shirish Shevade Numerical Optimization



Example:

min —2)C1 — X3
st. x1+x<5
xX1+2x <6
xz ..........
\ 5n+tx,=5
\\ 5+2x,=6
> A
o \\ :
™ \ %5
c=(2,-1)*
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Example:

—le—XQ
X1+ x SS
xX1+2x <6

X1,x >0

min

S.t.

X

AN
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Example:

min  —2x; — X
st. x1+x<5
xX1+2x <6
X1,% >0

X

AN
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Example:

min  —2x; — X
st. x1+x<5
xX1+2x <6
X1,% >0

\ ! 5
AY \\
‘' Optimal Solutiom

AN
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Example:

min  ¢’x
sit. xeX
X
Unbounded
Feasible Set
N
~
\\ c
[ RS
\\
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Example:

min  ¢’x
sit. xeX
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Unbounded
. Feasible Set, X
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Example:

min  ¢’x
sit. xeX
X
Unbounded
Feasible Set, X
~
~
~
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Example:

min  c¢’x
st. xeX
X
Unbounded
Feasible Set, X
~
~
~
N
~
~
\\ o
h ~ . xl
s Unbounded Problem
~
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Consider a linear programming problem LP:

Let X ={x:alx (<,=,>)b;, i=1,...,mx >0}
Remarks:

o
o
o

X is a closed convex set

The set of optimal solutions is a convex set.

The linear program may have no solution or a unique
solution or infinitely many solutions.

If x* is an optimal solution to LP, then x* must be a
boundary point of X.If z=c"x* then {x:c¢'x =z}isa
supporting hyperplane to X.

If X is compact and if there is an optimal solution to LP,
then at least one extreme point of X is an optimal solution
to the linear programming problem.
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LP in Standard Form:

min c'x
st. Ax=0»
x>0

where A € R"" and rank(A) = m.

Assumption: Feasible set is non-empty
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@ Any linear program can be converted to the Standard Form.

(a) max ¢/x = —min —c’x
(b) Constraint of the type

a'x<b, x>0

can be written as

a'x+y = b
x > 0
y =2 0

Shirish Shevade Numerical Optimization



(c) Constraint of the type
a'x>b, x>0

can be written as

a'x—z = b
x >0
z >0

(d) Free variables (x; € R) can be defined as

X=x—x, x>0, x>0
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Example:
min X1 — 2x — 3x3
S.t. X1 +2x +x3 <14
X1+ 2x +4x3 > 12
X —Xo+x3=2
X1, X, unrestricted

@ Write the constraints as éguadiryonstraints
o x| +2x+x3+x4=14, x4 >0
@ X1 +2x+4x3—x5 =12, x5 >0

@ Define new variables x|, x;, x5, x5 and x} such that

o x; =x{ —x;, where x| >0,x; >0
° xzzx;—xz_, wherexzr >0,x, >0
o xy=—3—x3sothat x; >0
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Therefore, the program
min X] — 2%, — 3x3

s.t. x1+2x +x3 < 14
X1+ 2x; +4x3 > 12
X —X+x3=2
X1, X, unrestricted
x3 <=3

can be converted to the standard form:

min x| —x;] —2(x) —x;)+3(3+x})
st X —xy 4206 —x3) =Xy +x =17
xF = x] + 2 —x) — 4 — x5 =24
xf—xy —xy +x —x, =5

+ v T T
x17x17x27x27x37x47x520
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Consider the linear program in standard form (SLP):

min  ¢’x
st. Ax=0»b
x>0

where A € R™*", rank(A) = rank(A|b) = m.

Let B € R™*" be formed using m linearly independent
columns of A.

Therefore, the system of equations, Ax = b can be written as,

(B N)(i‘z):b.

Letting xy = 0, we get
Bxzy=b = x3 =B 'b.  (xp: Basic Variables)

(xz 0)7: Basic solution w.r.t. the basis matrix B

Shirish Shevade Numerical Optimization



Basic Feasible Solution
If xz >0,then (xz 0)7 is called a basic feasible solution of

w.r.t. the basis matrix B.

Theorem
Let X ={x:Ax =b, x > 0}. x is an extreme point of X if
and only if x is a basic feasible solution of

Ax =b
x> 0.
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Proof.
(a) Let x be a basic feasible solution of Ax =b,x > 0.

Therefore, x = (x1,...,%,,0,...,0). Let B = (a\|ay]| . .. |a.)
N — N —
>0 n—m
where a4, . . . ,a,, are linearly independent. So,

xlal—i—...—i—xmam:b.

Suppose x is not an extreme point of X.
Let yzeX, y#zand x=ay+(l —a)z, 0 <a < 1.
Since y,z > 0, we have

ym—H:“-:yn:O -l y1a1+...+ymam:b
Im+l = - - —Zn = Z1a1++Zmam:b
Since ay,...,a, are linearly independent, x =y =z, a

contradiction. So, x is an extreme point of X.
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Proof.(continued)
(b) Let x be an extreme point of X.
xeX = Ax=b, x> 0.
There exist n linearly independent constraints active at x.
@ m active constraints associated with Ax = b.

@ n — m active constraints associated with n — m
non-negativity constraints

x is the unique solution of Ax = b, xy = 0.

Ax=b = Bxz+Nxy=b = x3=B 'b>0

Therefore, x = (xp xy)” is a basic feasible solution. O

Number of basic solutions < (n)
m

Enough to search the finite set of vertices of X to get an optimal
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Theorem

Let X be non-empty and compact constraint set of a linear
program. Then, an optimal solution to the linear program exists
and it is attained at a vertex of X.

Proof.

Objective function, ¢’x, of the linear program is continuous
and the constraint set is compact. Therefore, by Weierstrass’
Theorem, optimal solution exists.

The set of vertices, {xy,...,x;}, of X is finite.

Therefore, X is the convex hull of xi,...,x;.

Hence, forevery x € X, x = Zf;l o;x; where

a; >0, Zle o; = 1.

Let z* = min;<;< ¢’x;. Therefore, for any x € X,

z=clx = Zf; a;clx; > ¥ Zle a; = 7*. So, the minimum
value of ¢’x is attained at a vertex of X. [l
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Consider the constraints:
X1+ x S 2
X1 < 1

Y1 XYa > n
X

ararie — xl = 1
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The given constraints

X +x <2
X1 < 1
X1, X% >0
can be written in the form, Ax = b, x > 0:
X1 Ax+x3 =2
X1 +x; =1

X1, X2, X3, X4 20

1110 2
Le:tAz(1 0 0 1):(a1|a2|a3|a4) and b:<1>.
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1 110 o)
A:(1 00 1>:(a1\a2!a3\a4) and b:<1>'

0 B=(@le) = (} )

Xp = (X] XZ)T = Bilb = (1 1)T ande = (X3 X4)T = (O O)T
x = (xp xy)" corresponds to the vertex C.

X

%
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1 110 o)
A:<1 00 1>:(a1\a2!a3\a4) and b:<1>'

> B=(@la) = (} )

Xp = (X] X3)T = Bilb = (1 1)T ande = (.XZ X4)T = (O O)T
x = (xp xy)! corresponds to the vertex B.

X

%
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1110 )
A:(l 00 1>:(a1\a2!a3\a4) and b:<1>'

(3) B = (a1|as) = G (1’)

Xp = (X1 X4)T = Bilb = (2 — I)T and Xy = (XZ X3)T = (O O)T
x = (xp xy)7 is not a basic feasible point
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1 110 o)
A:<1 00 1>:(a1\a2!a3\a4) and b:<1>'

4) B = (as]as) = ((1) (1))

Xp = (X2 X4)T = Bilb = (2 1)T ande = (x1 X3)T = (O O)T
x = (xp xy) corresponds to the vertex D.

X

020
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1110 o)
A:<1 00 1>:(a1\a2!a3\a4) and b:<1>'

(5) B = (as]as) = ((1) (1))

Xp = (X3 X4)T = Bilb = (2 1)T ande = (x1 Xz)T = (O O)T
x = (xp xy)? corresponds to the vertex A.

X

020
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Example:

min —3X1 — X3
St x1+x <2
X1 S 1
]
- T x;=1

©20)P

[Z]

@0z’ T"(l,o,l,o) RN "

Shirish Shevade Numerical Optimization



