Numerical Optimization Linear Programming

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

Transportation Problem

- *ai* : Capacity of the plant *Fi*
- *bj* : Demand of the outlet *Rj*
	- c_{ii} : Cost of shipping one unit of product from *Fi* to *Rj*
- *xij*: Number of units of the product shipped from *Fi* to *Rj* (variables)
	- The objective is to *minimize* $\sum_{ij} c_{ij} x_{ij}$

$$
\sum_{j=1}^{3} x_{ij} \le a_i, i = 1, 2
$$

(constraints)

- $\sum_{i=1}^{2} x_{ij} \ge b_j, j = 1, 2, 3$ (constraints)
- \bullet $x_{ii} > 0 \ \forall \ i, j \ (constraints)$

The Diet Problem: Find the *most economical* diet that satisfies *minimum* nutritional requirements.

- Number of food items: *n*
- Number of nutritional ingredient: *m*
- Each person must consume *at least b^j* units of nutrient *j* per day
- Unit cost of food item *i*: *cⁱ*
- Each unit of food item *i* contains a_{ij} units of the nutrient *j*
- Number of units of food item *i* consumed: *xⁱ*

Constraint corresponding to the nutrient *j*:

$$
a_{j1}x_1 + a_{j2}x_2 + \ldots + a_{jn}x_n \geq b_j, \ \ x_i \geq 0 \ \forall \ i
$$

Cost:

$$
c_1x_1+c_2x_2+\ldots+c_nx_n
$$

Problem:

$$
\begin{aligned}\n\min \qquad & c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \\
\text{s.t.} \quad & a_{j1} x_1 + a_{j2} x_2 + \ldots + a_{jn} x_n \ge b_j \ \forall \ j \\
& x_i \ge 0 \ \forall \ i\n\end{aligned}
$$

Given: $c = (c_1, \ldots, c_n)^T$, $A = (a_1 | \ldots | a_n)$, $b = (b_1, \ldots, b_m)^T$. Linear Programming Problem (LP):

$$
\begin{array}{ll}\n\min & c^T x \\
\text{s.t.} & Ax \geq b \\
x \geq 0\n\end{array}
$$

where $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$.

- Assumption: $m \le n$, rank $(A) = m$
- Linear Constraints can be of the form $Ax = b$ or $Ax \leq b$

Constraint (Feasible) Set:

- Inequality constraint of the type $\{x : a^T x \le b\}$ or $\{x : a^T x \geq b\}$ denotes a *half space*
- Equality constraint, $\{x : a^T x = b\}$, represents an affine space
- Non-negativity constraint, $x > 0$
- Constraint set of an LP is a *convex* set

Polyhedral Set

$$
X=\{\boldsymbol{x}:A\boldsymbol{x}\leq\boldsymbol{b},\ \boldsymbol{x}\geq\boldsymbol{0}\}
$$

Polytope: A bounded polyhedral set

Consider the constraint set in \mathbb{R}^2 :

Consider the constraint set in \mathbb{R}^2 :

Feasible set can be a singleton set

Feasible Set = { (x_1, x_2) : $x_1 + x_2 = 2, -x_1 + x_2 = 1$ } = {*A*}

Feasible set can be empty!

Definition

Let *X* be a convex set. A point $x \in X$ is said to be an extreme point (corner point or vertex) of *X* if *x* cannot be represented as a strict convex combination of two distinct points in *X*.

Extreme Point: A

• Constraint Set:

$$
X = \{(x_1, x_2) : x_1 + x_2 \le 2, x_1 \le 1, x_1 \ge 0, x_2 \ge 0\}
$$

4 constraints in \mathbb{R}^2

• Two constraints are *binding* (active) at every extreme point

• Fewer than two constraints are binding at other points

Consider the constraint set: $X = \{x : Ax \leq b, x \geq 0\}$ where $A \in \mathbb{R}^{m \times n}$ and rank $(A) = m$.

- $m + n$ hyperplanes associated with $m + n$ halfspaces
- \bullet *m* + *n* halfspaces define *X*
- An extreme point lies on *n* linearly independent defining hyperplanes of *X*
- If *X* is nonempty, the set of extreme points of *X* is not empty and has a finite number of points.
- An edge of *X* is formed by intersection of *n* − 1 linearly independent hyperplanes
- Two extreme points of *X* are said to be adjacent if the line segment joining them is an edge of *X*

- For example, B and C are *adjacent* points
- Adjacent extreme points have *n* − 1 common binding linearly independent hyperplanes

Remarks:

Consider the constraint set: $X = \{x : Ax = b, x \ge 0\}$ where $A \in \mathbb{R}^{m \times n}$ and rank $(A) = m$.

- Let $\bar{x} \in X$ be an extreme point of *X*
- *m* equality constraints are active at \bar{x}
- Therefore, *n* − *m* additional hyperplanes (from the non-negativity constraints) are active at \bar{x}

Geometric Solution of a LP:

where $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$.

Shirish Shevade [Numerical Optimization](#page-0-0)

Shirish Shevade [Numerical Optimization](#page-0-0)

Shirish Shevade [Numerical Optimization](#page-0-0)

Consider a linear programming problem LP:

$$
\min \quad \mathbf{c}^T \mathbf{x} \\ \text{s.t.} \quad \mathbf{a}_i^T \mathbf{x} \ (\leq, =, \geq) \quad \mathbf{b}_i, \quad i = 1, \ldots, m \\ \mathbf{x} \geq \mathbf{0}
$$

Let $X = \{x : a_i^T x \leq j = 1, ..., m, x \geq 0\}.$ Remarks:

- *X* is a closed convex set
- The set of optimal solutions is a convex set.
- The linear program may have *no solution* or a *unique solution* or *infinitely many solutions*.
- If x^* is an optimal solution to **LP**, then x^* must be a *boundary* point of *X*. If $z = c^T x^*$, then $\{x : c^T x = z\}$ is a supporting hyperplane to *X*.
- If *X* is compact and if there is an optimal solution to LP, then *at least one* extreme point of *X* is an optimal solution to the linear programming problem.

LP in Standard Form:

min $c^T x$ s.t. $Ax = b$ *x* ≥ 0

where $A \in \mathbb{R}^{m \times n}$ and rank $(A) = m$.

Assumption: Feasible set is non-empty

- Any linear program can be converted to the Standard Form.
- (a) max $c^T x = \min \ -c^T x$

(b) Constraint of the type

$$
a^T x \leq b, \ x \geq 0
$$

can be written as

$$
a^T x + y = b
$$

$$
x \ge 0
$$

$$
y \ge 0
$$

(c) Constraint of the type

$$
a^T x \geq b, \ x \geq 0
$$

can be written as

$$
a^T x - z = b
$$

$$
x \ge 0
$$

$$
z \ge 0
$$

(d) Free variables ($x_i \in \mathbb{R}$) can be defined as

$$
x_i = x_i^+ - x_i^-, \ \ x_i^+ \ge 0, \ x_i^- \ge 0
$$

min
$$
x_1 - 2x_2 - 3x_3
$$

s.t. $x_1 + 2x_2 + x_3 \le 14$
 $x_1 + 2x_2 + 4x_3 \ge 12$
 $x_1 - x_2 + x_3 = 2$
 x_1, x_2 unrestricted

- Write the constraints as *equality* ³ constraints
	- $x_1 + 2x_2 + x_3 + x_4 = 14$, $x_4 > 0$ \bullet *x*₁ + 2*x*₂ + 4*x*₃ − *x*₅ = 12, *x*₅ > 0

Define new variables x_1^+ $x_1^+, x_1^ \frac{1}{1}$, x_2^+ $x_2^+, x_2^ \frac{1}{2}$ and x'_3 such that

•
$$
x_1 = x_1^+ - x_1^-
$$
, where $x_1^+ \ge 0$, $x_1^- \ge 0$
\n• $x_2 = x_2^+ - x_2^-$, where $x_2^+ \ge 0$, $x_2^- \ge 0$
\n• $x_3' = -3 - x_3$ so that $x_3' \ge 0$

Therefore, the program

min
$$
x_1 - 2x_2 - 3x_3
$$

s.t. $x_1 + 2x_2 + x_3 \le 14$
 $x_1 + 2x_2 + 4x_3 \ge 12$
 $x_1 - x_2 + x_3 = 2$
 x_1, x_2 unrestricted
 $x_3 \le -3$

can be converted to the standard form:

min
$$
x_1^+ - x_1^- - 2(x_2^+ - x_2^-) + 3(3 + x_3')
$$

s.t. $x_1^+ - x_1^- + 2(x_2^+ - x_2^-) - x_3' + x_4 = 17$
 $x_1^+ - x_1^- + 2(x_2^+ - x_2^-) - 4x_3' - x_5 = 24$
 $x_1^+ - x_1^- - x_2^+ + x_2^- - x_3' = 5$
 $x_1^+, x_1^-, x_2^+, x_2^-, x_3', x_4, x_5 \ge 0$

Consider the linear program in standard form (SLP):

$$
\begin{array}{ll}\n\min & c^T x \\
\text{s.t.} & Ax = b \\
x \ge 0\n\end{array}
$$

where $A \in \mathbb{R}^{m \times n}$, rank (A) = rank $(A|b)$ = *m*. Let $\mathbf{B} \in \mathbb{R}^{m \times m}$ be formed using *m* linearly independent columns of *A*.

Therefore, the system of equations, $Ax = b$ can be written as,

$$
(\boldsymbol{B} \hspace{0.1in} N) \left(\begin{array}{c} x_B \\ x_N \end{array} \right) = \boldsymbol{b}.
$$

Letting $x_N = 0$, we get

$$
\boldsymbol{B}\boldsymbol{x}_B = \boldsymbol{b} \ \Rightarrow \ \boldsymbol{x}_B = \boldsymbol{B}^{-1}\boldsymbol{b}.\qquad (\boldsymbol{x}_B : \text{ Basic Variables})
$$

 $(x_B \ 0)^T$: Basic solution w.r.t. the *basis matrix B*

Basic Feasible Solution

If $x_B \geq 0$, then $(x_B \ 0)^T$ is called a *basic feasible solution* of

 $Ax = b$ $x > 0$

w.r.t. the basis matrix *B*.

Theorem

Let $X = \{x : Ax = b, x \ge 0\}$. *x is an extreme point of* X *if and only if x is a basic feasible solution of*

> $Ax = b$ $x > 0$.

Proof.

(a) Let *x* be a basic feasible solution of $Ax = b, x \ge 0$.

Therefore,
$$
\mathbf{x} = (\underbrace{x_1, \dots, x_m}_{\geq 0}, \underbrace{0, \dots, 0}_{n-m})
$$
. Let $\mathbf{B} = (\mathbf{a}_1 | \mathbf{a}_2 | \dots | \mathbf{a}_m)$
where $\mathbf{a}_1, \dots, \mathbf{a}_m$ are linearly independent. So,

$$
x_1a_1+\ldots+x_ma_m=b.
$$

Suppose *x* is not an extreme point of *X*. Let $y, z \in X$, $y \neq z$ and $x = \alpha y + (1 - \alpha)z$, $0 < \alpha < 1$. Since $y, z > 0$, we have

$$
y_{m+1} = \ldots = y_n = 0
$$

\n $z_{m+1} = \ldots = z_n = 0$ and $y_1 a_1 + \ldots + y_m a_m = b$
\n $z_1 a_1 + \ldots + z_m a_m = b$

Since a_1, \ldots, a_m are linearly independent, $x = y = z$, a contradiction. So, *x* is an extreme point of *X*.

Proof.(continued)

(b) Let *x* be an extreme point of *X*.

 $x \in X \Rightarrow Ax = b, x \ge 0.$

There exist *n* linearly independent constraints active at *x*.

- *m* active constraints associated with $Ax = b$.
- *n* − *m* active constraints associated with *n* − *m* non-negativity constraints

x is the *unique* solution of $Ax = b$, $x_N = 0$.

$$
Ax = b \Rightarrow Bx_B + Nx_N = b \Rightarrow x_B = B^{-1}b \ge 0
$$

Therefore, $\mathbf{x} = (\mathbf{x}_B \ \mathbf{x}_N)^T$ is a basic feasible solution.

Number of basic solutions \leq *n*

Enough to search the finite set of vertices of *X* to get an optimal

m \setminus

Theorem

Let X be non-empty and compact constraint set of a linear program. Then, an optimal solution to the linear program exists and it is attained at a vertex of X.

Proof.

Objective function, $c^T x$, of the linear program is continuous and the constraint set is compact. Therefore, by Weierstrass' Theorem, optimal solution exists. *The set of vertices,* $\{x_1, \ldots, x_k\}$ *, of X is finite.* Therefore, *X* is the convex hull of x_1, \ldots, x_k . Hence, for every $\mathbf{x} \in X, \mathbf{x} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i$ where $\alpha_i \geq 0, \sum_{i=1}^k \alpha_i = 1.$ Let $z^* = \min_{1 \le i \le k} c^T x_i$. Therefore, for any $x \in X$, $z = c^T x = \sum_{i=1}^k \alpha_i c^T x_i \geq z^* \sum_{i=1}^k \alpha_i = z^*$. So, the minimum value of $c^T x$ is attained at a vertex of *X*.

Consider the constraints:

The given constraints

$$
x_1 + x_2 \le 2
$$

$$
x_1 \le 1
$$

$$
x_1, x_2 \ge 0
$$

can be written in the form, $Ax = b$, $x \ge 0$:

$$
x_1 + x_2 + x_3 = 2
$$

\n
$$
x_1 + x_2 + x_3 = 1
$$

\n
$$
x_1, x_2, x_3, x_4 \ge 0
$$

\nLet $A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = (a_1|a_2|a_3|a_4)$ and $b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$.

$$
A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = (a_1|a_2|a_3|a_4) \text{ and } b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.
$$

(1) $B = (a_1|a_2) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
 $x_B = (x_1 x_2)^T = B^{-1}b = (1 \ 1)^T \text{ and } x_N = (x_3 x_4)^T = (0 \ 0)^T.$
 $x = (x_B x_N)^T \text{ corresponds to the vertex C.}$

$$
A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = (a_1|a_2|a_3|a_4) \text{ and } b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.
$$

(2) $B = (a_1|a_3) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
 $x_B = (x_1 x_3)^T = B^{-1}b = (1 \ 1)^T \text{ and } x_N = (x_2 x_4)^T = (0 \ 0)^T.$
 $x = (x_B x_N)^T \text{ corresponds to the vertex } B.$

$$
A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = (a_1|a_2|a_3|a_4) \text{ and } b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.
$$

\n(3) $B = (a_1|a_4) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$
\n $x_B = (x_1 x_4)^T = B^{-1}b = (2 - 1)^T \text{ and } x_N = (x_2 x_3)^T = (0 \ 0)^T.$
\n $x = (x_B x_N)^T \text{ is not a basic feasible point}$

$$
A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = (a_1|a_2|a_3|a_4) \text{ and } b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.
$$

(4) $B = (a_2|a_4) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $x_B = (x_2 \ x_4)^T = B^{-1}b = (2 \ 1)^T \text{ and } x_N = (x_1 \ x_3)^T = (0 \ 0)^T.$
 $x = (x_B \ x_N)^T \text{ corresponds to the vertex } D.$

$$
A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = (a_1|a_2|a_3|a_4) \text{ and } b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.
$$

(5) $B = (a_3|a_4) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $x_B = (x_3 x_4)^T = B^{-1}b = (2 \ 1)^T \text{ and } x_N = (x_1 x_2)^T = (0 \ 0)^T.$
 $x = (x_B x_N)^T \text{ corresponds to the vertex A.}$

