Numerical Optimization Linear Programming - II

Shirish Shevade

Computer Science and Automation Indian Institute of Science Bangalore 560 012, India.

NPTEL Course on Numerical Optimization

LP in Standard Form:

 $\begin{array}{ll} \min \quad \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

where $A \in \mathbb{R}^{m \times n}$ and rank(A) = m.

Let x be a *nondegenerate basic feasible solution* corresponding to the basic variable set B and non-basic variable set N. Let B denote the basis matrix.

$$Ax = b$$

$$\therefore Bx_B + Nx_N = b$$

$$\therefore x_B = B^{-1}b - B^{-1}Nx_N$$

Particular Solution: $x_B = B^{-1}b$ and $x_N = 0$

Objective Function = $c^T x$ = $c^T_B x_B + c^T_N x_N$ = $c^T_B B^{-1} b - c^T_B B^{-1} N x_N + c^T_N x_N$ = $\bar{z} + \bar{c}^T_B x_B + \bar{c}^T_N x_N$

where $\bar{c}_B^T = \mathbf{0}^T$ and $\bar{c}_N^T = c_N^T - c_B^T B^{-1} N$ are the *relative cost* factors corresponding to the basis matrix B and \bar{z} denotes the current objective function value.

LP in Standard Form:

$$\begin{array}{ll} \min \quad \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

where $A \in \mathbb{R}^{m \times n}$ and rank(A) = m.

- Convex Programming Problem
- Assumption:
 - Feasible set is non-empty
 - Slater's condition is satisfied
- First order KKT conditions are necessary and sufficient at optimality

LP in Standard Form:

$$\begin{array}{ll} \min \quad \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

where $A \in \mathbb{R}^{m \times n}$ and rank(A) = m.

Define the Lagrangian function:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{\mu}^T (\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}) - \boldsymbol{\lambda}^T \boldsymbol{x}$$

First Order KKT Conditions at optimality:

- Primal Feasibility: $Ax = b, x \ge 0$
- $\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathbf{0} \Rightarrow \mathbf{A}^T \boldsymbol{\mu} + \boldsymbol{\lambda} = \mathbf{c}$
- Complementary Slackness Condition: $\lambda_i x_i = 0 \forall i$
- Non-negativity: $\lambda_i \ge 0 \ \forall \ i$

Let \mathbf{x} be a *nondegenerate basic feasible solution* corresponding to the basic variable set B and non-basic variable set N. $\mathbf{x} = (\mathbf{x}_B \ \mathbf{x}_N)^T$ where $\mathbf{x}_B > \mathbf{0}$ and $\mathbf{x}_N = \mathbf{0}$. At optimal $(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$,

•
$$\lambda_B = \mathbf{0}$$
 and $\lambda_N \ge \mathbf{0}$.
• $\mathbf{c} = \mathbf{A}^T \boldsymbol{\mu} + \boldsymbol{\lambda}$. That is,
 $\begin{pmatrix} \mathbf{c}_B \\ \mathbf{c}_N \end{pmatrix} = \begin{pmatrix} \mathbf{B}^T \\ N^T \end{pmatrix} \boldsymbol{\mu} + \begin{pmatrix} \lambda_B \\ \lambda_N \end{pmatrix} \Rightarrow \begin{array}{c} \mathbf{c}_B = \mathbf{B}^T \boldsymbol{\mu} + \lambda_B \\ \mathbf{c}_N = \mathbf{N}^T \boldsymbol{\mu} + \lambda_N \end{pmatrix}$
• $\lambda_B = \mathbf{0} \Rightarrow \mathbf{c}_B = \mathbf{B}^T \boldsymbol{\mu} \Rightarrow \boldsymbol{\mu} = \mathbf{B}^{T-1} \mathbf{c}_B$
• $\lambda_N \ge \mathbf{0}$ requires that

$$\boldsymbol{\lambda}_N = \boldsymbol{c}_N - (\boldsymbol{B}^{-1}\boldsymbol{N})^T \boldsymbol{c}_B \geq \boldsymbol{0}$$

The current basic feasible solution x is *not* optimal if there exists $x_q \in N$ such that $\lambda_q < 0$.

$$\boldsymbol{x}$$
 is feasible $\Rightarrow \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \geq \boldsymbol{0}.$
 $\therefore \boldsymbol{B}\boldsymbol{x}_B + N\boldsymbol{x}_N = \boldsymbol{b} \Rightarrow \boldsymbol{x}_B = \boldsymbol{B}^{-1}\boldsymbol{b} - \boldsymbol{B}^{-1}N\boldsymbol{x}_N$

Objective Function at $\mathbf{x} = \mathbf{c}^T \mathbf{x}$

$$= c_B^T x_B + c_N^T x_N$$

$$= c_B^T (B^{-1}b - B^{-1}Nx_N) + c_N^T x_N$$

$$= c_B^T B^{-1}b + \underbrace{(c_N^T - c_B^T B^{-1}N)}_{\lambda_N^T} x_N$$

$$= c_B^T B^{-1}b \quad (\because x_N = \mathbf{0})$$

Suppose there exists a non-basic variable $x_q \in N$ ($x_q = 0$) such that $\lambda_q < 0$.

 \therefore Objective Function at $\mathbf{x} = \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b} + \lambda_q x_q$

The objective function can be decreased if x_q is changed from 0 to some positive value (by making x_q a *basic* variable).

Suppose x_q is made a basic variable. Therefore, some existing basic variable $x_p (\in B)$ needs to be made *non-basic*. Ax = b

$$\therefore \boldsymbol{B}\boldsymbol{x}_{B} + \boldsymbol{N}\boldsymbol{x}_{N} = \boldsymbol{b}$$

$$\therefore \boldsymbol{x}_{B} = \boldsymbol{B}^{-1}\boldsymbol{b} - \boldsymbol{B}^{-1}\boldsymbol{N}\boldsymbol{x}_{N}$$

$$\begin{pmatrix} x_{1} \\ \vdots \\ x_{p} \\ \vdots \\ x_{m} \end{pmatrix} = \begin{pmatrix} \bar{b}_{1} \\ \vdots \\ \bar{b}_{p} \\ \vdots \\ \bar{b}_{m} \end{pmatrix} - (\boldsymbol{B}^{-1}\boldsymbol{N})_{\cdot,q}x_{q}$$

Note: $\bar{\boldsymbol{b}} > \boldsymbol{0}$ How to choose x_p ? Require $(\boldsymbol{B}^{-1}\boldsymbol{N})_{p,q} > 0$ so that x_p can decrease if x_q increases.

$$\begin{pmatrix} x_1 \\ \vdots \\ x_p \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} \bar{b}_1 \\ \vdots \\ \bar{b}_p \\ \vdots \\ \bar{b}_m \end{pmatrix} - (\boldsymbol{B}^{-1}\boldsymbol{N})_{\cdot,q}x_q$$

How to choose the basic variable x_p to be made non-basic? Let $\hat{B}_q = \{x_j \in B : (B^{-1}N)_{jq} > 0\}.$

$$x_q = \min_{x_j \in \hat{B}_q} \frac{\overline{b}_j}{(\boldsymbol{B}^{-1}N)_{jq}} = \frac{\overline{b}_p}{(\boldsymbol{B}^{-1}N)_{pq}}$$

• If $\hat{B}_q = \phi$, the problem is *unbounded*.

Summary of steps:

Given a basic feasible solution, $(\boldsymbol{x}_B \, \boldsymbol{x}_N)^T$ w.r.t. \boldsymbol{B} . If $\boldsymbol{\lambda}_N = \boldsymbol{c}_N - (\boldsymbol{B}^{-1}N)^T \boldsymbol{c}_B \leq \boldsymbol{0}$ Choose $x_q \in N$ such that $\lambda_q < 0$

2
$$\hat{B}_q = \{x_j \in B : (B^{-1}N)_{jq} > 0\}.$$

So If $\hat{B}_q \neq \phi$, find the basic variable x_p to be made non-basic.

$$x_q = \min_{x_j \in \hat{B}_q} \left(rac{ar{b}_j}{(oldsymbol{B}^{-1}oldsymbol{N})}_{jq} = rac{ar{b}_p}{(oldsymbol{B}^{-1}oldsymbol{N})}_{pq}$$

Swap x_p and x_q from the sets *B* and *N*

Geometrical Interpretation of Steps 1-5

Moving from one extreme point of the feasible set to an adjacent extreme point so that the objective function value decreases.

Example:

LP in Standard Form:

 $\begin{array}{ll} \min \quad \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

where $A \in \mathbb{R}^{m \times n}$ and rank(A) = m.

Given a basis matrix B w.r.t. the basis vector set B,

- Basic Feasible Solution: $\boldsymbol{x}_B = \boldsymbol{B}^{-1}\boldsymbol{b}, \ \boldsymbol{x}_N = \boldsymbol{0}$
- Objective function = $\boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{b}$
- Relative cost factors, $\lambda_N = c_N (B^{-1}N)^T c_B$

LP in Standard Form:

$$\begin{array}{ll} \min \quad \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

where $A \in \mathbb{R}^{m \times n}$ and rank(A) = m.

Shirish Shevade Numerical Optimization

Example:

$$\begin{array}{ll} \min & -3x_1 - x_2 \\ \text{s.t.} & x_1 + x_2 \leq 2 \\ & x_1 \leq 1 \\ & x_1, x_2 \geq 0 \end{array}$$

Given problem in the standard form:

min
$$-3x_1 - x_2$$

s.t. $x_1 + x_2 + x_3 = 2$
 $x_1 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

• Initial Basic Feasible Solution: $\mathbf{x}_B = (x_3, x_4)^T = (2, 1)^T, \ \mathbf{x}_N = (x_1, x_2)^T = (0, 0)^T$

min
$$-3x_1 - x_2$$

s.t. $x_1 + x_2 + x_3 = 2$
 $x_1 + x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

• Initial Basic Feasible Solution: $\mathbf{x}_B = (x_3, x_4)^T = (2, 1)^T, \ \mathbf{x}_N = (x_1, x_2)^T = (0, 0)^T$ Initial Tableau:

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & \text{RHS} \\ \hline 1 & 1 & 1 & 0 & 2 \\ \hline 1 & 0 & 0 & 1 & 1 \\ \hline -3 & -1 & 0 & 0 & 0 \end{pmatrix}$$

• Initial Basic Feasible Solution:

$$\mathbf{x}_B = (x_3, x_4)^T = (2, 1)^T, \ \mathbf{x}_N = (x_1, x_2)^T = (0, 0)^T$$

• Current Objective function = 0

Shirish Shevade

(x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	RHS	_)
	1	1	1	0	2	-
	1	0	0	1	1	
Ĺ	-3	-1	0	0	0	-/

Incoming basic variable: x_1

1	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	RHS	_)
-	1	1	1	0	2	-
	1	0	0	1	1	
	-3	-1	0	0	0	-/

Incoming nonbasic variable: x_1

(x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	RHS	_)
	1	1	1	0	2	-
	1	0	0	1	1	
ĺ	-3	-1	0	0	0	-)

Outgoing basic variable: x_4

(<i>x</i> ₁	x_2	<i>x</i> ₃	x_4	RHS	
	0	1	1	-1	1	_
	1	0	0	1	1	
(0	-1	0	3	3	-)

Shirish Shevade Numerical Optimization

1	<i>x</i> ₁	x_2	<i>x</i> ₃	x_4	RHS	_)
	0	1	1	-1	1	-
	1	0	0	1	1	
(0	-1	0	3	3	-/

- Current Basic Feasible Solution: $(x_1, x_3)^T = (1, 1)^T, (x_2, x_4)^T = (0, 0)^T$
- Current Objective function = -3

- Current Basic Feasible Solution: $(x_1, x_3)^T = (1, 1)^T, (x_2, x_4)^T = (0, 0)^T$
- Current Objective function = -3

Shirish Shevade Numerical Optimization

(<i>x</i> ₁	x_2	<i>x</i> ₃	x_4	RHS	_)
	0	1	1	-1	1	-
	1	0	0	1	1	
Ĺ	0	-1	0	3	3	-)

Incoming nonbasic variable: x_2

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & \text{RHS} \\ \hline 0 & 1 & 1 & -1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ \hline 0 & -1 & 0 & 3 & 3 \end{pmatrix}$$

Incoming nonbasic variable: x_2

(<i>x</i> ₁	x_2	<i>x</i> ₃	x_4	RHS	_)
-	0	1	1	-1	1	-
	1	0	0	1	1	
	0	-1	0	3	3	-/

Outgoing basic variable: x_3

Shirish Shevade Numerical Optimization

• Current Basic Feasible Solution: $(x_1, x_2)^T = (1, 1)^T, (x_3, x_4)^T = (0, 0)^T$

• Current Objective function = -4

Shirish Shevade Num

$$\begin{pmatrix} \begin{array}{c|cccc} x_1 & x_2 & x_3 & x_4 & \text{RHS} \\ \hline 0 & 1 & 1 & -1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 1 & 2 & 4 \end{pmatrix}$$

- Current Basic Feasible Solution: $(x_1, x_2)^T = (1, 1)^T$, $(x_3, x_4)^T = (0, 0)^T$
- Current Objective function = -4
- $\lambda_N = (1,2)^T > \mathbf{0}^T$
- Optimal Solution: $x^* = (1, 1)^T, c^T x^* = -4$

• Initial Basic Feasible Solution:

$$\mathbf{x}_B = (x_3, x_4)^T = (2, 1)^T, \ \mathbf{x}_N = (x_1, x_2)^T = (0, 0)^T$$

• Current Objective function = 0

Shirish Shevade

Incoming basic variable: x_2

LP in Standard Form:

$$\begin{array}{ll} \min \quad \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

where $A \in \mathbb{R}^{m \times n}$ and $\operatorname{rank}(A) = m$.

Simplex Algorithm to solve an LP [Dantzig]¹

¹G. B. Dantzig, *Linear Programming and Extensions*, Princeton University Press, 1963

Simplex Algorithm (to solve an LP in Standard Form)

(1) Get initial basis matrix **B**, basic feasible solution,

$$x_B = B^{-1}b, x_N = 0$$
, set Unbounded = FALSE.
(2) $\lambda_N = c_N - (B^{-1}N)^T c_B$
(3) while (Unbounded == FALSE and $\exists x_j \in N \ni \lambda_j < 0$)
(a) Select a non-basic variable $x_q \in N$ such that $\lambda_q < 0$
(b) $\hat{B}_q = \{x_j \in B : (B^{-1}N)_{jq} > 0\}$.
(c) if $\hat{B}_q == \phi$
• Unbounded = TRUE
else
(i) $x_q = \min_{x_j \in \hat{B}_q} \frac{\bar{b}_j}{(B^{-1}N)_{jq}} = \frac{\bar{b}_p}{(B^{-1}N)_{pq}}$
(ii) $x_i = \bar{b}_i - (B^{-1}N)_{iq}x_q, \forall x_i \in B$
(iii) Swap x_p and x_q between B and N, update B and λ
endif
endwhile

Output : $x^* = (x_B, x_N)^T$ if Unbounded == FALSE

Remarks:

• How to select a non-basic variable $x_q \in N$ in Step 3(a) of the Simplex Algorithm?

$$x_q = \operatorname*{argmin}_{i \neq j} \lambda_j$$

If the basic feasible solution is *nondegenerate* at each iteration, then the Simplex Algorithm terminates in a finite number of iterations.

Objective Function =
$$\boldsymbol{c}_B^T \boldsymbol{x}_B + \boldsymbol{c}_N^T \boldsymbol{x}_N$$

= $\boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{b} - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_N + \boldsymbol{c}_N^T \boldsymbol{x}_N$
= $\bar{\boldsymbol{z}} + \bar{\boldsymbol{c}}_B^T \boldsymbol{x}_B + \bar{\boldsymbol{c}}_N^T \boldsymbol{x}_N$

where $\bar{\boldsymbol{c}}_B^T = \boldsymbol{0}^T$, $\bar{\boldsymbol{c}}_N^T = \boldsymbol{c}_N^T - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} N$ and \bar{z} denotes the current objective function value. If the basic feasible solution is nondegenerate, then the objective function decreases in each iteration. Since the number of basic feasible solutions is finite, the algorithm has finite convergence.

• How to get initial basic feasible solution?

(a) Case I: Given constraints

 $\begin{aligned} Ax \leq b \\ x \geq 0 \end{aligned}$

(with $b \ge 0$), can be written as

Use Basic feasible solution, $(x, y)^T = (0, b)^T$, to solve

$$\begin{array}{ll} \min \quad \boldsymbol{c}^T \boldsymbol{x} + \boldsymbol{0}^T \boldsymbol{y} \\ \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} + \boldsymbol{y} = \boldsymbol{b} \\ \boldsymbol{x}, \boldsymbol{y} \geq \boldsymbol{0} \end{array}$$

(b) Case 2: Given constraints (C2)

Ax = b $x \ge 0,$

(with $b \ge 0$), solve the *artificial* linear program (ALP)

 $\begin{array}{ll} \min \quad \mathbf{1}^T \mathbf{y} \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} + \mathbf{y} = \mathbf{b} \\ \mathbf{x}, \mathbf{y} \geq \mathbf{0}. \end{array}$

to get the initial basic feasible solution, $x \ge 0$ (if it exists).

- If there exists x that satisfies constraints C2, then ALP has the optimal objective function value of 0 with y = 0 and $x \ge 0$.
- If C2 has no feasible solution, then the optimal objective function value of ALP is *greater than* 0.

(c) Case 3: Given constraints

$$\begin{aligned} Ax \ge b \\ x \ge 0 \end{aligned}$$

(with $b \ge 0$), can be written as

$$\begin{array}{ccc} Ax-z+y=b\\ x,y,z\geq 0 \end{array} \Rightarrow \begin{array}{ccc} (A \ I \ -I) \begin{pmatrix} x\\ y\\ z \end{pmatrix} = b\\ x,y,z\geq 0. \end{array}$$

• Solve an artificial linear program (similar to Case 2)

Two Phase Method

Given the linear program (**SLP**):

$$\begin{array}{ll} \min \quad \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

where $b \ge 0$.

- Phase I: Introduce artificial variables and solve the artificial linear program with initial basic feasible solution, (x = 0, y = b), to get a basic feasible solution for SLP or conclude that it does not exist.
- Phase II: Get the initial basic feasible solution (if it exists) from Phase I to solve **SLP**.

Example:
min
$$2x_1 - x_2$$

s.t. $x_1 + x_2 \le 3$
 $-x_1 + x_2 \ge 1$
 $x_1, x_2 \ge 0$

Phase I: Introducing artificial variables, the constraints become $x_1 + x_2 + x_3 = 3$ $-x_1 + x_2 - x_4 + x_5 = 1$ $x_1, x_2, x_3, x_4, x_5 > 0$

Therefore, the artificial linear program

min $x_3 + x_5$ s.t. $x_1 + x_2 + x_3 = 3$ $-x_1 + x_2 - x_4 + x_5 = 1$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

has $x_3 = 3, x_5 = 1, x_1 = x_2 = x_4 = 0$ as its initial basic feasible solution.

min $x_3 + x_5$ s.t. $x_1 + x_2 + x_3 = 3$ $-x_1 + x_2 - x_4 + x_5 = 1$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

Initial Tableau:

1	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS	_)
ľ	1	1	1	0	0	3	-
	-1	1	0	-1	1	1	
Ĺ	0	0	1	0	1	0	-/

Making the relative costs of basic variables 0,

(x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS	_)
	1	1	1	0	0	3	_
	-1	1	0	-1	1	1	
Ĺ	0	-2	0	1	0	-4	_/

Shirish Shevade Numerical Optimization

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \text{RHS} \\ \hline 1 & 1 & 1 & 0 & 0 & 3 \\ \hline -1 & 1 & 0 & -1 & 1 & 1 \\ \hline 0 & -2 & 0 & 1 & 0 & -4 \end{pmatrix}$$

Incoming non-basic variable: x_2

(x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS	_)
	1	1	1	0	0	3	_
	-1	1	0	-1	1	1	
	0	-2	0	1	0	-4	_/

Outgoing basic variable: x_5

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \text{RHS} \\ \hline 2 & 0 & 1 & 1 & -1 & 2 \\ -1 & 1 & 0 & -1 & 1 & 1 \\ \hline -2 & 0 & 0 & -1 & 2 & -2 \end{pmatrix}$$

Incoming non-basic variable: x_1

(x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS	_)
	2	0	1	1	-1	2	-
	-1	1	0	-1	1	1	
Ĺ	-2	0	0	-1	2	-2	-/

Outgoing basic variable: x_3

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \text{RHS} \\ \hline 1 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 1 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 2 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Basic feasible solution: $x_1 = 1, x_2 = 2, x_3 = x_4 = 0$.

Shirish Shevade

Numerical Optimization

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \text{RHS} \\ \hline 1 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 1 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 2 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Basic feasible solution: $x_1 = 1, x_2 = 2, x_3 = x_4 = 0$.

Phase II: For the given problem,

min
$$2x_1 - x_2$$

s.t. $x_1 + x_2 + x_3 = 3$
 $-x_1 + x_2 - x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0$

Initial Tableau:

(<i>x</i> ₁	x_2	<i>x</i> ₃	<i>x</i> ₄	RHS	_)
	1	0	$\frac{1}{2}$	$\frac{1}{2}$	1	-
	0	1	$\frac{\overline{1}}{2}$	$-\frac{1}{2}$	2	
Ĺ	2	-1	0	0	0]

Making the relative costs of basis variables 0,

Incoming non-basic variable: x_4

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & \text{RHS} \\ \hline 1 & 0 & \frac{1}{2} & \frac{1}{2} & 1 \\ 0 & 1 & \frac{1}{2} & -\frac{1}{2} & 2 \\ \hline 0 & 0 & -\frac{1}{2} & -\frac{3}{2} & 0 \end{pmatrix}$$

Outgoing basic variable: x_1

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & \text{RHS} \\ \hline 2 & 0 & 1 & 1 & 2 \\ \hline 1 & 1 & 1 & 0 & 3 \\ \hline 3 & 0 & 1 & 0 & 3 \end{pmatrix}$$

$$\mathbf{x}^* = (x_1, x_2)^T = (0, 3)^T, \ \mathbf{c}^T \mathbf{x}^* = -3$$

Shirish Shevade

Example: min $-4x_1 - 2x_2$ s.t. $3x_1 - 2x_2 \ge 4$ $-2x_1 + x_2 = 2$ $x_1, x_2 \ge 0$

Phase I: Introducing artificial variables, the constraints become $3x_1 - 2x_2 - x_3 + x_4 = 4$ $-2x_1 + x_2 + x_5 = 2$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

Therefore, the artificial linear program min $x_4 + x_5$ s.t. $3x_1 - 2x_2 - x_3 + x_4 = 4$ $-2x_1 + x_2 + x_5 = 2$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

has $x_4 = 4, x_5 = 2, x_1 = x_2 = x_3 = 0$ as its initial basic feasible solution.

min $x_4 + x_5$ s.t. $3x_1 - 2x_2 - x_3 + x_4 = 4$ $-2x_1 + x_2 + x_5 = 2$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

Initial Tableau:

(x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS	_)
	3	-2	-1	1	0	4	-
	-2	1	0	0	1	2	
Ĺ	0	0	0	1	1	0	-/

Making the relative costs of basic variables 0,

(x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS	_)
	3	-2	-1	1	0	4	-
	-2	1	0	0	1	2	
ľ	-1	1	1	0	0	-6	-)

Shirish Shevade Numerical Optimization

Incoming non-basic variable: x_1

(x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	RHS	_)
	3	-2	-1	1	0	4	-
	-2	1	0	0	1	2	
Ĺ	-1	1	1	0	0	-6	-)

Outgoing basic variable: x_4

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \text{RHS} \\ \hline 1 & \frac{-2}{3} & \frac{-1}{3} & \frac{1}{3} & 0 & \frac{4}{3} \\ 0 & \frac{-1}{3} & \frac{-2}{3} & \frac{2}{3} & 1 & \frac{14}{3} \\ \hline 0 & \frac{1}{3} & \frac{2}{3} & \frac{1}{3} & 0 & -\frac{14}{3} \end{pmatrix}$$

The given problem has no feasible solution.

- Cycling
 - Possible in the presence of degenerate basic feasible solution
 - Consider the example given by Beale²

min
$$-\frac{3}{4}x_1 + 20x_2 - \frac{1}{2}x_3 + 6x_4$$

s.t.
$$\frac{1}{4}x_1 - 8x_2 - x_3 + 9x_4 = 0$$
$$\frac{1}{2}x_1 - 12x_2 - \frac{1}{2}x_3 + 3x_4 = 0$$
$$x_3 + x_5 = 1$$
$$x_j \ge 0 \ \forall \ j$$

• Bland's rule to avoid cycling: Arrange the variables in some ordered sequence. Among all the candidate variables to enter (or to leave) the basis, choose the variable with the smallest index

²Beale E.M.L., Cycling in the dual simplex algorithm, *Naval Research Logistics Quarterly*, 2(4), pp. 269-276, 1955.