Power system Dynamics and Control Synchronous Machine Modelling

1. Consider the following transformation:

$$\begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix} = C_{P_1} \begin{bmatrix} f_{d1} \\ f_{q1} \\ f_{01} \end{bmatrix} \quad , \quad \begin{bmatrix} f_a \\ f_b \\ f_c \end{bmatrix} = C_{P_2} \begin{bmatrix} f_{d2} \\ f_{q2} \\ f_{02} \end{bmatrix}$$

where

$$C_{P_1} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\phi_1) & \sin(\phi_1) & \frac{1}{\sqrt{2}} \\ \cos(\phi_1 - \frac{2\pi}{3}) & \sin(\phi_1 - \frac{2\pi}{3}) & \frac{1}{\sqrt{2}} \\ \cos(\phi_1 - \frac{4\pi}{3}) & \sin(\phi_1 - \frac{4\pi}{3}) & \frac{1}{\sqrt{2}} \end{bmatrix}$$

and

$$C_{P_2} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\phi_2) & \sin(\phi_2) & \frac{1}{\sqrt{2}} \\ \cos(\phi_2 - \frac{2\pi}{3}) & \sin(\phi_2 - \frac{2\pi}{3}) & \frac{1}{\sqrt{2}} \\ \cos(\phi_2 - \frac{4\pi}{3}) & \sin(\phi_2 - \frac{4\pi}{3}) & \frac{1}{\sqrt{2}} \end{bmatrix}$$

(a) Obtain the relationship between
$$\begin{bmatrix} f_{d1} \\ f_{q1} \\ f_{01} \end{bmatrix}$$
 and $\begin{bmatrix} f_{d2} \\ f_{q2} \\ f_{02} \end{bmatrix}$
i.e if $\begin{bmatrix} f_{d2} \\ f_{q2} \\ f_{02} \end{bmatrix} = P \begin{bmatrix} f_{d1} \\ f_{q1} \\ f_{01} \end{bmatrix}$ then find [P]
(b) Show that $(f_{q2} + if_{d2}) = (f_{q1} + if_{d1})e^{j(\phi_1 - \phi_2)}$ and 1

(b) Show that
$$(f_{q2} + jf_{d2}) = (f_{q1} + jf_{d1})e^{j(\phi_1 - \phi_2)}$$
 and hence show that $\sqrt{f_{q2}^2 + f_{d2}^2} = \sqrt{f_{q1}^2 + f_{d1}^2}$

Assume in the following problems that :

$$F^{abc} = C(\gamma)F^{dq0} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\gamma) & \sin(\gamma) & \frac{1}{\sqrt{2}} \\ \cos(\gamma - \frac{2\pi}{3}) & \sin(\gamma - \frac{2\pi}{3}) & \frac{1}{\sqrt{2}} \\ \cos(\gamma - \frac{4\pi}{3}) & \sin(\gamma - \frac{4\pi}{3}) & \frac{1}{\sqrt{2}} \end{bmatrix} F^{dq0}$$
(1)

- 2. If the abc variables are transformed by two transformations $C(\gamma_1)$ and $C(\gamma_2)$ to two sets of variables, $(d_1, q_1, 0)$ and $(d_2, q_2, 0)$, where $\gamma_1 = \gamma_2 + \phi$, then if $v_0 = 0$:
 - (a) Instantaneous Real Power = $v_{q1}i_{q1} + v_{d1}i_{d1} = v_{q2}i_{q2} + v_{d2}i_{d2}$
 - (b) Instantaneous Real Power = $v_{q1}i_{q1} + v_{d1}i_{d1} = (v_{q2}i_{q2} + v_{d2}i_{d2})e^{j\phi}$
 - (c) Instantaneous Real Power = $v_{q1}i_{q1} + v_{d1}i_{d1} = (v_{q2}i_{q2} + v_{d2}i_{d2})e^{-j\phi}$
 - (d) Instantaneous Real Power = $v_{q1}i_{q1} + v_{d1}i_{d1} = (v_{q2}i_{q2} + v_{d2}i_{d2})e^{2j\phi}$

3. If the abc variables are transformed by two transformations $C(\gamma_1)$ and $C(\gamma_2)$ to two sets of variables, $(d_1, q_1, 0)$ and $(d_2, q_2, 0)$, where $\gamma_1 = \gamma_2 + \phi$, then show that :

$$(f_{q1} + jf_{d1}) = (f_{q2} + jf_{d2})e^{-j\phi}$$

- 4. Consider a balanced set of star connected 3 phase elements. The transformation of Eqn. 1 is used to transform from abc to dq variables. In steady state $\sqrt{v_d^2 + v_q^2}$ and $\sqrt{i_d^2 + i_q^2}$ are equal to :
 - (a) L-L rms voltage and rms current
 - (b) L-N rms voltage and $\sqrt{3} \times$ rms current
 - (c) L-L rms voltage and $\sqrt{3} \times$ rms current
 - (d) L-N rms voltage and rms current
- 5. If a particular program uses the modeling convention $k_{d1} = 1, k_{q1} = -1$ while another uses $k_{d2} = \sqrt{\frac{2}{3}}, k_{q2} = \sqrt{\frac{2}{3}} (k_d \text{ and } k_q \text{ are explained in Video Lecture-14}), \text{ then}$

(a)
$$i_{d1} = \sqrt{\frac{2}{3}}i_{d2}, i_{q1} = -\sqrt{\frac{2}{3}}i_{q2}$$

(b) $i_{d1} = -\sqrt{\frac{2}{3}}i_{d2}, i_{q1} = \sqrt{\frac{2}{3}}i_{q2}$

(c)
$$i_{d1} = \sqrt{\frac{3}{2}}i_{d2}, i_{q1} = \sqrt{\frac{3}{2}}i_{q2}$$

(d)
$$i_{d1} = \sqrt{\frac{3}{2}}i_{d2}, i_{q1} = -\sqrt{\frac{3}{2}}i_{q2}$$

6. Derive the relation-ship (for small deviations) between the polar and rectangular coordinates as given below:

$$\begin{bmatrix} \Delta V_Q \\ \Delta V_D \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} \frac{\Delta V}{V} \\ \Delta \theta \end{bmatrix}$$

where $V = \sqrt{V_Q^2 + V_D^2}$ and $\theta = \tan^{-1} \frac{V_D}{V_Q}$

- 7. The expression (in terms of d-q variables) of steady state reactive power absorbed by the balanced three phase system shown below is :
 - (a) $v_a i_d + v_d i_a$

(b)
$$-v_q i_d + v_d i_q$$

(c) $-v_q i_d - v_d i_q$

(c)
$$-v_q i_d - v_d i_d$$

(d)
$$v_q i_d - v_d i_q$$

- 8. Suppose V_a , V_b and V_c are sinusoids with frequency w_o and have a negative sequence component (but no zero sequence component). Then, if the transformation $C(\gamma)$ is used with $\gamma = w_o t + \delta$, where δ is a constant :
 - (a) V_d and V_q will have sinusoidal components of double the frequency
 - (b) V_d and V_q will be constants
 - (c) V_d and V_q will have sinusoidal components of half the frequency
 - (d) V_d and V_q will be exponentially decaying
- 9. The effect of neglecting stator transients in the synchronous machine equations during short circuit is equivalent to
 - (a) neglecting an exponentially decaying component in the stator phase currents
 - (b) neglecting a high frequency (50Hz decaying oscillatory component in the d & q currents)(c) neglecting an exponentially decaying mode in the field current
 - (d) neglecting a high frequency (50Hz) decaying oscillatory component in the field current
 - (e) neglecting an exponentially decaying component in electromagnetic torque
 - (f) neglecting a high frequency decaying oscillatory component in the electromagnetic torque
- 10. By making appropriate assumptions in the 2.2 model and with $x''_d \approx x''_q$, show that the time constant of decay for the mode referred in the previous question (also called armature time constant (T_a) is ::

$$T_a \approx \frac{x_d''}{\omega_B R_a}$$

- 11. For obtaining the classical model from a more realistic 2.2 model, the following assumptions have to be made:
 - (a) The damper windings are opened (i.e, $R_g = R_k = R_h = \infty$) or equivalently $T'_q = T''_q = T''_d = 0$
 - (b) The damper windings have $R_g = R_k = R_h = 0$ or equivalently $T'_q = T''_q = T''_d = \infty$
 - (c) Transient Saliency is neglected: $x'_d = x'_q$
 - (d) $T'_d = \infty$ or equivalently $\frac{d\psi_f}{dt} = 0$, i.e ψ_f is constant.
 - (e) $T'_d = 0$ or equivalently $-\psi_f + \psi_d + \frac{x'_d}{x_d x'_d} E_{fd} = 0$
- 12. Which of the following set of data on machine MVA base is/are likely to be incorrect?

Generator	x_d	x'_d	x''_d	T'_{do}	$T_{do}^{\prime\prime}$	x_q	x'_q	x''_q	T'_{qo}	$T_{qo}^{\prime\prime}$	Η
(A)	1.06	0.35	0.25	6.37	0.09	0.66	-	0.3	-	0.09	3.82
(B)	2.31	0.267	0.223	9	0.06	2.19	0.7	0.223	1	0.06	3.0
(C)	2.31	0.267	0.223	9	0.06	2.19	0.7	0.223	1	0.06	0.5
(D)	2.31	0.267	0.223	1	0.06	2.19	0.7	0.223	1	0.06	3.0

13. Consider the system shown in Fig. 1 which consists of 2 *identical* generators within a power plant connected to a large generator via identical transformers and a transmission line. Note that, P_1 , P_2 , P_3 are the electrical power outputs of generators and θ_1 , θ_2 , θ_3 , θ_4 are the bus voltage phase angles of the respective buses. Answer the following questions : (Assumption:

The identical generators are also operated with the same amount of mechanical power input and field voltage)

(a) How many swing modes are present ?

(b) In which of the variables, $\theta_1, \theta_2, \theta_3, \theta_4$ is the *intra*-plant mode not observable

(c) In which of the variables $P_1, P_2, P_3, (P_1 - P_2)$ is the (*inter*-plant) mode not observable. (d) In which of the variables $P_1, P_2, (\theta_1 - \theta_2)$ is the center of inertia (COI) mode poorly observable.

Figure 1:

14. The eigenvalues of a multimachine system are shown below. The generator model 1.1 (two rotor windings are modelled: field winding and one damper winding on the q-axis) is used and excitation system is modelled by a single transfer function. There are no other *dynamical equations*. Answer the following questions :

a) The number of machines which have been considered are :

b) The number of swing modes are :

c) Are loads frequency dependent/ mechanical damping is present (yes or no)? : Give reason for your answer

Full System Matrix
$-0.8492\pm j12.7672$
$-0.2512 \pm j 8.3648$
$-2.2421 \pm j3.0195$
-0.1384
$-4.6654 \pm j1.3830$
$-3.4855 \pm j1.0014$
-2.2614
-0.8882
-3.2258
0.0

15. Consider a salient pole synchronous machine whose field winding and damper windings are removed. Also, eddy currents in the rotor are assumed to be negligible and the generator is operating at a constant speed (ω_B). Therefore the only differential equations of the machine

Figure 2:

are those corresponding to the stator d,q fluxes. The generator is connected to a balanced three phase star connected capacitor bank as shown in Fig. 2 .

- (a) Write down the differential equations of the machine stator flux and the capacitor voltages in the d-q frame of reference you need not write the zero sequence differential equations. Do not neglect the stator resistance.
- (b) Write the A matrix (state space form).
- (c) If x_d and x_q are constant, how may equilibrium points are there? What is/are the equilibrium value of the states ?
- (d) Compute the eigenvalues for the following cases:
 - i. $x_d = 1.0$ pu, $x_q = 0.6$ pu, $R_a = 0.01$ pu, $b_c = 0.5$ pu, $\omega_B = 2\pi 50$ rad/s
 - ii. $x_d = 1.0$ pu, $x_q = 0.6$ pu, $R_a = 0.01$ pu, $b_c = 1.5$ pu, $\omega_B = 2\pi 50$ rad/s
 - iii. Suppose $x_d = x_q$ and we define:
 - $W = \frac{x_d}{\omega_B}(i_d^2 + i_q^2) + \frac{b_c}{\omega_B}(v_d^2 + v_q^2)$, then evaluate the expression for $\frac{dW}{dt}$. What can you infer from this ?
- (e) Comment on the results that you have obtained
- 16. Starting from a synchronous generator model, derive the model of induction machine. Show that an induction machine driven by prime mover can self excite if a capacitor bank of large enough rating is connected to its terminals.
- 17. For a balanced three phase electrical network, the relationship between the phase-neutral voltages and currents are given by :

$$\begin{bmatrix} v_a(s) \\ v_b(s) \\ v_c(s) \end{bmatrix} = \begin{bmatrix} Z(s) & 0 & 0 \\ 0 & Z(s) & 0 \\ 0 & 0 & Z(s) \end{bmatrix} \begin{bmatrix} i_a(s) \\ i_b(s) \\ i_c(s) \end{bmatrix}$$

The relationship in the d-q variables is given by :

$$\begin{bmatrix} v_d(s) \\ v_q(s) \end{bmatrix} = \begin{bmatrix} Z_{dd}(s) & Z_{dq}(s) \\ Z_{qd}(s) & Z_{qq}(s) \end{bmatrix} \begin{bmatrix} i_d(s) \\ i_q(s) \end{bmatrix}$$

Derive the expressions for $Z_{dd}(s)$, $Z_{dq}(s)$, $Z_{qd}(s)$ and $Z_{qq}(s)$ in terms of Z(s).

The transformation described by equation 1 is used with $\gamma = \omega_0 t$, where ω_0 is a constant.

18. If a generator is modeled by 1.1 model (two rotor windings are modelled: field winding and one damper winding on the q-axis), the equation for the rotor windings are given by:

$$\frac{d\psi_f}{dt} + R_f i_f = v_f \quad \text{(field winding)}$$
$$\frac{d\psi_g}{dt} + R_g i_g = 0 \qquad \text{(q axis damper)}$$

and the inductance matrix is given by

$$\begin{bmatrix} \psi_d \\ \psi_f \\ \psi_q \\ \psi_g \end{bmatrix} = \begin{bmatrix} L_d & M_{df} & 0 & 0 \\ M_{df} & L_{ff} & 0 & 0 \\ 0 & 0 & L_q & M_{qg} \\ 0 & 0 & M_{qg} & L_{gg} \end{bmatrix} \begin{bmatrix} \psi_d \\ \psi_f \\ \psi_q \\ \psi_g \end{bmatrix}$$

(a) show that

 $\psi_d(s)$ can be expressed as follows $\psi_d(s) = L_d(s)I_d(s) + G'(s)V_f(s)$ Write down the expressions for $L_d(s)$ and G'(s) in terms of L_d , M_{df} , L_{ff} and R_f

- (b) Similarly show that $\psi_q(s) = L_q(s)I_q(s)$, write down the expression for $L_q(s)$
- (c) Also show that $i_f(s)$ can be written as $i_f(s) = A_1(s)i_d(s) + A_2(s)v_f(s)$ write down the expression for $A_1(s)$ and $A_2(s)$
- 19. Write the dynamical equations of the capacitor voltages in the dq0 frame of reference using the transformation of Equation (1) where $\gamma = \omega t$.

If the time constant of the circuit is $\tau = RC$, what are the eigenvalues of the system which you have formulated in the dq0 variables ?

20. For each of the following phenomena, indicate the *simplest models* that can be used to get reasonably accurate answers.

Phenomena/	Machine	Network	Excitation	Prime Mover	Load	Mech.	Small
Study						Eqns.	Signal (lin-
							earized) or
							Nonlinear
							Models ?
a) Sub-							
Synchronous							
Resonance							
b) HVDC							
power elec-							
tronic simula-							
tion							
c) Power Oscil-							
lation damping							
control design							
d) Islanding							
and u/f load							
shedding							
e) Transient							
Stability							
f) Voltage Sta-							
bility							

Machine Model:

- (A) Constant voltage source
- (B) 0.0 (classical model)
- (C) 1.0 stator transients neglected
- (D) Damper windings modelled stator transients neglected
- (E) Damper windings modelled -stator transients considered

Network Model:

- (A) Lumped parameter dynamical representation
- (B) Distributed parameter dynamic representation
- (C) Quasi-sinusoidal steady state representation (dynamics neglected)

Excitation System Model

- (A) Exciter not modelled (constant excitation voltage)
- (B) Detailed excitation system with voltage regulator- over-excitation limiters not modelled
- (C) Detailed excitation system with voltage regulator- over-excitation limiters modelled

Prime Mover Model

(A) Not modelled (constant mechanical power)

- (B) Simple Model (linear turbine-governor model)
- (C) Detailed Model (turbine/ governor/ boiler controls modelled in detail)

Load Model

(A) Static - frequency / voltage dependent loads

(B) Dynamic - large controlled loads and tap changing transformers modelled

Mechanical Equations of Turbine-Generator-Exciter (TGE)

- (A) TGE modelled as a single rigid mass
- (B) Masses (lumped) connected by elastic shaft model
- 21. Do the following simulation :
 - (a) A generator is operating on open circuit at a speed 314 rad/s = ω_0 . At time t = 5 s the field voltage is 'switched on', i.e., E_{fd} is given a unit step. Compute the response of the various variables i.e, i_d , i_q , v_d , v_q , ψ_d , ψ_q . Assume that the generator is rotating at a constant speed. Initial values (t = 0 s) of all states are zero.
 - (b) At t = 30 s, the generator output is shorted. Compute the response of all the variables.

Note: You may take $v_d = Ri_d$ and $v_q = Ri_q$. For open circuit conditions, take R = 100 pu and for short circuit R = 0.01 pu.

 $x_d = 1.79, x'_d = 0.169, x''_d = 0.135, T'_{d0} = 4.3 s, T''_{d0} = 0.032 s, T''_{dc} = 0.032 s, x_q = 1.71, x'_q = 0.228, x''_q = 0.2, T'_{q0} = 0.85 s, T''_{q0} = 0.05 s$

(c) Repeat the same exercise with stator transients neglected.