Level 0 Packaging:

Interconnections within semiconductor IC chips

Not considered 'packaging' in the common parlance

Level 1 Packaging

Single Chip Module (SCM)

- In-line packages
- Small out line packages
- Quad packages
- Array packages

Level 2 Packaging

Multi Chip Modules (MCM)

- ❖ MCM-D
- ❖ MCM-C
- ❖ MCM-L

Level 3 Packaging

Printed Wiring Board (PWB)

Level 4 Packaging

Represents final product/system and integration

- PWBs
- Subassemblies like power supplies
- Items for user interface (displays and key boards etc.)
- Special components (transformer, CRTs, fans etc.)
- Wiring
- Protective enclosure

EXAMPLE 1 System Integration in a Product

Cellular phone

Mascot of Communication Industry

Needs:

- Weight and size of the instrument are to be kept low
- Battery life should be long

Trend in Handheld Products

- Miniaturization
- Technology Convergence
- Application Convergence
- Ubiquity and Interconnectivity
- Affordable Cost
- Performance/Reliability

An example of system-level integration in a cellular phone

EXAMPLE 1 of System Integration in a Product...

Design decisions

- Use less number of ICs (higher levels of integration)
- The choice of all components (format types??)
- Methods of assembling them

Functional Block Diagram of a Cell Phone

Systems Requirements

Battery operation_

- Circuits are to be designed to maximize the life of the battery
- Health of the battery needs to be monitored
- User needs to be informed if its charge is going down below a minimum level
- Must have provision for charging the battery when it is plugged to a power point
- Subsystems of the unit require different power supplies generated from the same battery

System Requirements (Contd.)

- Low weight of the unit
- Minimization of the number of ICs used (voice CODEC (coder/decoder), digital signal processor, speaker amplifiers power-conditioning units, supply voltage supervisors)
- Up to 60 discrete (R, C) components may be needed (they occupy space on the board)

Cell phone requires

- Displays, keypads
- Battery compartments
- Housing for the microphone
- Speaker
- Antenna

Majority of the cell phones on the market

- RF, digital sections, power supplies on one board
- LCD display, the keypad and the related circuitry on the second board
- Front cover incorporates the speaker and the microphone
- ❖ Back cover will house the antenna, and battery

Competition for the cell phone market is intense

- Companies would not risk using new technologies whose yields and reliabilities are not completely established
- Companies use mature technologies and components

Competitive advantages are created through

- More memory
- Functional features (through software)
- Industrial design (attractive color combinations, convenient shapes etc.)

Trends in mobile phone growth: Increased packaging efficiency due to high-density chip packages (low-cost yet high-performance)

Average
number of ICs
for phones
made before
2000 is 21;
average for
2000 and later
is 12.

Average IC package area for phones made before 2000 was 18; average for 2000 and later is 9.

C Package Areas

Average IC pins be per cm2 of package area for phones made before 2000 was 37; for 2000 and later is 76.

CDMA Phones

Past & Present

1997 Qualcomm Q Phone 102 mm x 56 mm x 25 mm 147 grams

2001 Samsung SPH-x4200 89 mm x 50 mm x 24 mm 94 grams

Dual-Mode Phone (CDMA 800 MHz & Analog)

- All ICs packages have peripheral leads.
- All 12 of the ICs directly support phone functions in some way
 - 1. Flash Memory
 - 2. SRAM Memory
 - 3. EEPROM Memory
 - 4. Baseband CDMA Processor
 - Controller
 - 6. Multiplexer
 - 7. Dual Frequencey Synthesizer
 - 8. Rx AGC Amplifier
 - 9. Baseband Analog Processor
 - 10. Tx AGC Amplifier
 - 11. Power Amplifier
 - 12. Linear Amplifier
- 20.1 cm² of IC packaging
- 608 IC Pins

CDMA-2000 Phone

- Almost all ICs are packaged into area array type packages.
- The phone functions performed by 13 ICs:
 - 1. Fujitsu Flash and NEC FCRAM memory
 - 2. Atmel EEPROM (WL-CSP)
 - Tx Processor
 - 4. Tx ASIC
 - 5. Voltage Regulator
 - 6. PLL / Synthesizer
 - 7. LNA / Mixer
 - 8. Rx Processor
 - 9. Dual Comparator
 - 10. Audio Processor
 - 11. Audio Synthesizer
 - 12. AMD Flash & Samsung SRAM
- 9.5 cm² of IC packaging
- 714 IC Pins

Source: <u>www.computer.yourdictionary.com</u> Original illustration: Joseph Fjelstad

GSM Phones

Past & Present

1996 Nokia 1610 160 mm x 58 mm x 28 mm 250 grams

2001 Nokia 8310 97 mm x 43 mm x 17 mm 84 grams

Mitsubishi D2101V

"Extreme" IC Packaging Techniques

Dual Chip BGA Package assembled with Adhesive Flip Chip

 The first use of adhesive flip chip bonding of a large processor type IC that was made even more notable by having two chips bonded on both sides of a substrate. Also notable was that the chips were extraordinarily thin.

Stacked Processor ICs

Stacked memory chips (e.g. combinations of Flash and SRAM)
have become common place; but this is the first observed instance
of two large processor ICs being stacked.

Multi-Chip Modules

- Two custom (hybrid) components in the form of fine-pitched BGAs.

IC Pin Counts

Average pin count for phones made before 2000 is 623; average for 2000 and later is 643.

Average IC chip area to package area ratio for phones made before 2000 is 0.17; average for 2000 and

later is 0.27.

EXAMPLE 2- Personal Computers (PCs)

- IBM-compatible computers using the DOS, OS/2 or Windows (NT) operating system
- The first PC: IBM in 1982
- The first PC was built with 8086 CPU from Intel and DOS operating system supplied by Microsoft

Present day PC is multifunctional:

- number crunching application
- multimedia entertainment
- Internet access

Greatest strength of the PC is its modularity

PCs are made up of many different individual modules, which can be mixed and matched in thousands of different configurations.

Components of a PC

- System Case
- Mother Board
- Hard disk Drive
- Floppy Drive
- CD-ROM Drive/DVD Drive

- Peripheral Interfaces
- Monitor
- Mouse
- Keyboard
- Peripherals

Available with a wide range of performances and capacities from multiple vendors

System Case

- Metal and plastic box that houses the main components of the computer
- Not considered very important part of the computer
- Not as critical to the system as some other computer components

Features

- Motherboard mounts into the case
- Internal components mount into either the motherboard or the case itself

Features...

- Must provide a solid structural framework for these components to ensure that everything fits together and works well
- Protects the inside of your system from the outside world, and vice-versa
- Forms a critical part of proper system cooling
- Organization and Expandability
- Aesthetics
- Status Display

Motherboard

- Provides working place for all of the components of the PC to interface
- Divided into a bus board (with slots) and a separate processor board in a Modular PC
- Slots for main memory and additional adapter cards
- Adapter cards include graphics adapters, controllers, multimedia

Low Cost PC

- Total area of PCBs is reduced
- Significant reduction in PCBs associated with the peripherals
- Board density is less
- Uses a last-generation microprocessor
- Power dissipation lower, and lower cost heat sinks are used

