MANAGERIAL ECONOMICS

Prof. Trupti Mishra

Shailesh J. Mehta School of Management, IIT Bombay

Lecture No - 16: Demand Forecasting

Session Outline

Demand Forecasting

- Subjective methods can be used only when past data is not available.
- When past data is available, it is advisable that firms should use statistical tools as it is more scientific and cost effective.
- Depends on time series of past sales.

- Trend Projections:
- Component of time series data
- Secular trend Change occurring consistently over a long time and is relatively smooth in its path.

- Trend Projections: component of time series
- Seasonal trend: Seasonal variation in the data within a year.
- Cyclical trend: Cyclical movement in the demand for a product that may have to tendency to recur in a few years.

- Trend Projections: component of time series
- Random Events: natural calamities, social unrest- no trend of evidence, hence create random variation in the trend.

- Component of Time series Y = T + S + C + R
- Or Y = TSCR
- Log Y = Log T + Log S + Log C + Log R

- Trend Projections: Methods
 - Graphical Methods: past values of variable in different time is plotted in a graph and movement of the series assessed and future values are forecasted.

- Trend Projections: Methods
 - Least Squares Method: tool to estimate the coefficient of a linear function based on minimization of squared deviations between best fitting line and original observations given.

- Trend Projections: Methods
 - ARIMA Method: Box and Jenkins method
 - Stage 1 Underlying tend in the series is removed with first differences of successive observations
 - Stage 2 Possible combinations will be created on the basis of autoregressive terms, moving average terms and number of differences in the original series for adequate fit to the series.

- Trend Projections: Methods
 - ARIMA Method: Box and Jenkins method
 - Stage 3 Parameter estimation Least square methods
 - Stage 4 Goodness to fit is tested on the basis of residuals generated, repeat if not a good fit.
 - Stage 5 Use the coefficient to forecast future demand.

- Smoothing Techniques
 - Series do not show continuous trend seasonal and random variations
 - This technique is used to smoothen these varaitions and then forecasting of future values.

- Smoothing Techniques
 - Moving average : forecasts on the basis of demand values during recent past.
 - Dn = $\sum_{i=1}^{n} Di/n$

- Smoothing Techniques
 - Weighted Moving average : forecasts on the basis of weights of the recent observations.
 - Dn = $\sum_{i=1}^{n}$ DiWi/n

Quantitative methods of Demand forecasting

Smoothing Techniques

- Exponential smoothing: assigns greater weight to most recent data as to have realistic estimate of the fluctuations.
- Weight vary between zero to one.
- F t+1 = aDt + (1-a)Ft
- F t+1 = 0.30Dt + 070Ft

- Barometric Techniques
 - DEFINITION:- "The prediction of turning points In one economic time series through the use of Observations on another time series called the Barometer of the Indicator".

- Barometric Techniques
 - An index is constructed of relevant economic indicators and forecast future trends on the basis of these indicators.
 - Leading indicators
 - Coincident indicators
 - Lagging indicator

- Barometric Techniques
 - Leading Indicators :
 - Series that go up or down ahead of other series.
 - Coincidence indicators:
 - Series that moves up or down simultaneously with level of economic activities
 - Lagging Indicators:
 - · Series which move with economic series after a time lag

- Econometrics Methods
 - Regression Analysis: relates a dependent variable to one or more independent variables in the form of linear equation.
 - Instruments to casual forecasting.

- Econometrics Methods: Regression Analysis
 - Simple /Bivariate Regression Analysis
 - Non linear analysis
 - Multiple regression analysis

- Econometrics Methods: Regression Analysis
 - Problems:
 - Multicolinearity
 - Autocorrelation
 - Heteroscedasticity
 - Specfication of error
 - Identification problem

- Econometrics Methods: Regression Analysis Problems
 - Multicollinearity
 - Two or more explanatory variables in the regression model are highly correlated
 - Thus impact of each individual independent variable on the dependent variable becomes difficult to ascertain
 - Example: Consumption of an individual is affected by "income" and "wealth" of the individual
 - Thus, detection and removal of multicollinearity is important.
 - Multicollinearity can be removed by inclusion of omission of variables, additional data, increase sample size and intervention of advanced statistical tools.

- Econometrics Methods: Regression Analysis Problems
 - Autocorrelation:
 - Is the condition when error terms ("e") in the regression equation are found to be serially correlated. Also called "Serially Correlated".
 - Can occur in both time series as well as cross sectional data
 - Detected by Durbin Watson test

- Econometrics Methods: Regression Analysis Problems
 - Heteroscedasticity
 - Classical regression model assumes that variance of error terms is constant for all values of the independent variables in the model. If variables have different variances, they are heteroscedastic.
 - Heteroscedastic disturbances lead to a biased estimator of the true variance
 - There is no particular rule for detection. Mostly detected by intuition, experience
 - Can be overcome by running a Weighted Least Square Regression

- Econometrics Methods: Regression Analysis Problems
 - Specification error
 - Occurs when one or more independent variables in a regression model is omitted or when the structural form is wrongly constructed
 - Example-1: In a demand forecasting regression of consumer, omitting "income" of consumer leads to specification error.
 - Example-2: A demand function is non linear. If it estimated to be linear, it leads to specification error.

- Econometrics Methods: Regression Analysis Problems
 - Identification problem
 - Example: If it is required to determine the effect of quantity demanded of a good when its price is increased by say 10%.
 - Historical data of monthly demand and price will not give the solution as price is part of a multi-equation system. Supply of the good also needs to be taken into account to avoid biased parameters.

- Econometrics Methods: Simultaneous equation methods
 - Based on the guiding principle that in any economic decision every variable influences every other variable
 - Example-1: Decision on optimal advertisement expenditure depends on expected sales volume. Volume of sales is influenced by advertisement.
 - Example-2: Quantity demanded of tea depends on price of coffee and price of coffee gets influenced by quantity of demanded of tea.

- Econometrics Methods: Simultaneous equation methods
 - Given the existence of simultaneous and two way relationships, it is not possible to capture such relationships using single equation models. Hence the need for simultaneous equation methods
 - A typical simultaneous equation model may comprise of:
 - Endogenous variables
 - Exogenous variables
 - Structural equations
 - Definitional equations

- Econometrics Methods: Simultaneous equation methods
 - Endogenous variables:
 - Are those which the system seeks to predict
 - Are included in the model as dependent variables
 - Number of equations in the model must equal the number of endogenous variables
 - Exogenous variables:
 - Those that are given from outside the model

- Econometrics Methods: Simultaneous equation methods
 - Structural equations:
 - Are those equations which seek to explain the relation between a particular endogenous variable and other variables in the system
 - Definitional equations:
 - Those equations which specify relationships that are considered to be true by definition

Limitation of demand forecasting

- Past data and events are not always true predictors of future
- Change in Fashion
- Consumer's psychology
- Uneconomical
- Lack of forecasting experts
- Lack of past data for forecasting

Demand Forecasting - Summary

Summary

- Forecasting is an operations research technique of planning and decision making
- Demand forecasting is a scientific and analytical estimation of demand for a product/service for a specified period of time
- Is categorized based on
 - level of forecasting Firm, Industry, Economy
 - Time period Short term, medium term, long term
 - Nature of goods Capital goods, consumer goods, etc

Demand Forecasting - Summary

- Summary
 - Techniques of demand forecasting
 - Qualitative
 - Consumer's Opinion Survey Census Method, Sample Method
 - Sales force Composite
 - Expert opinion methods
 - Market Simulation
 - Test Marketing

Demand Forecasting - Summary

- Summary
 - Techniques of demand forecasting
 - Quantitative
 - Trend Projections Graphical methods, Least Squares Method, ARIMA Method
 - Smoothing Techniques Moving average, Weighted Moving average, Exponential smoothing,
 - Barometric Techniques
 - Econometrics Methods Regression Analysis Simple /Bivariate analysis, Non linear analysis, Multiple regression analysis

Session References

Managerial Economics: Geetika, Ghosh and Choudhury