NPTEL

Course Name: Security Analysis and Portfolio Management

Department: VGSOM, IIT Kharagpur

Instructors: Dr. Chandra Sekhar Mishra & Dr. Jitendra Mahakud

Session 34: Bond Price Volatility

1. What is Price volatility for bonds? How it has implication for investors? Ans.

Bond price change is measured as the percentage change in the price of the bond

$$\frac{\text{EPB}}{\text{BPB}} - 1$$

Where: EPB = the ending price of the bond BPB = the beginning price of the bond

Determinants of Price Volatility for Bonds: Par value, Coupon, Years to maturity, prevailing market interest rate

Implications for Investor:

- A bond buyer in order to receive the maximum price impact of an expected change in interest rates should purchase low-coupon and long-maturity bonds.
- If an increase in interest rate is expected an investor contemplating his purchase should consider these bonds with large coupons or short-maturities or both.
- 2. Outline Price-Yield Relationship for Bonds.

Ans.

- The graph of prices relative to yields is not a straight line, but a curvilinear relationship
- This can be applied to a single bond, a portfolio of bonds, or any stream of future cash flows
- The convex price-yield relationship will differ among bonds or other cash flow streams depending on the coupon and maturity
- The convexity of the price-yield relationship declines slower as the yield increases
- Modified duration is the percentage change in price for a nominal change in yield
- **3.** Explain Convexity.

Ans.

- Price changes are not linear, but a curvilinear (convex) function. It measures the degree to which the relationship between a bond's price and yield departs from a straight line. It is the term used to refer to the degree to which duration changes as YTM changes. Convexity is desirable.
- The convexity is the measure of the curvature and is the second derivative of price with resect to yield (d^2P/di^2) divided by price. Convexity is the percentage change in dP/di for a given change in yield.

$$Convexity = \frac{\frac{d^2 P}{di^2}}{P}$$

- Determinants of Convexity: Inverse relationship between coupon and convexity, Direct relationship between maturity and convexity, Inverse relationship between yield and convexity
- **4.** Explain Burton Malkiel's Theorem. Ans.
- The change that occur in the price of a bond (volatility) given a change in yield is because of time to maturity and coupon
- Holding maturity constant a decrease in interest rates will raise bond prices on a percentage basis more than a corresponding increase in rates will lower bond prices.
- Given the changes in market yields changes in bond prices are directly related to time to maturity.
- The percentage price change that occurs at a result of the direct relationship between a bond's maturity and its price volatility at a diminishing rate as the time to maturity increases.
- Other things being equal bond price fluctuations and bond coupon rates are inversely related.

5. What is Duration? Ans.

- It is the weighted average on a present value basis of the time to full recovery of the principal and interest payments on a bond. It measures the weighted average maturity of a bond's cash flows on a present value basis. It is represented as the time period.
- Maturity is an inadequate measure of the sensitivity of a bond's price change to changes in yields because it ignores the coupon payments and principal payment. Therefore, a measure of time designed to more accurately portray a bond's average life, taking into account all of the bond's cash flows, including both coupons and the return of principal at maturity. Such a measure of time is called as Duration.

Characteristics of Duration:

- Duration of a bond with coupons is always less than its term to maturity because duration gives weight to these interim payments. A zero-coupon bond's duration equals its maturity
- There is an inverse relation between duration and coupon
- There is a positive relation between term to maturity and duration, but duration increases at a decreasing rate with maturity
- There is an inverse relation between YTM and duration

Measure of Duration:

$$D = \frac{\sum_{t=1}^{n} \frac{C_{t}(t)}{(1+i)^{t}}}{\sum_{t=1}^{n} \frac{C_{t}}{(1+i)^{t}}} = \frac{\sum_{t=1}^{n} t \times PV(C_{t})}{\text{price}}$$

Where:

t = time period in which the coupon or principal payment occurs

 C_t = interest or principal payment that occurs in period t

i = yield to maturity on the bond