NPTEL lectures on

Elementary Numerical Analysis

by

Professor Rekha P. Kulkarni

Department of Mathematics

Indian Institute of Technology Bombay

Assignment 1

1. Let $f : [a,b] \to \mathbb{R}$ be continuous, $x_1, \dots, x_n \in [a,b]$ and $\alpha_1, \dots, \alpha_n$ be non-negative real numbers. Show that there exists $c \in [a,b]$ such that

$$\sum_{i=1}^{n} \alpha_i f(x_i) = f(c) \sum_{i=1}^{n} \alpha_i.$$

2. Let $f : [a, b] \to \mathbb{R}$ be continuous and $g : [a, b] \to \mathbb{R}$ be integrable. If $g(x) \leq 0, x \in [a, b]$, then show that

$$\int_a^b f(x) g(x) dx = f(c) \int_a^b g(x) dx.$$

3. Let

$$f(x) = x^3 - 2x^2 + x.$$

Show that there exists c such that $f(c) = \frac{1}{2}$.

4. Let M > 0. Show that

$$\frac{M^n}{n!} \to 0 \text{ as } n \to \infty.$$

5. Let $l_i(x)$ denote the *i*th Lagrange interpolation polynomial based on x_0, x_1, \dots, x_n with $n \ge 1$. Show that

$$\sum_{i=0}^{n} x_i \ l_i(x) = x.$$