NPTEL lectures on

Elementary Numerical Analysis

by

Professor Rekha P. Kulkarni

Department of Mathematics

Indian Institute of Technology Bombay

Quiz 1

Time: 20 minutes

Marks: 10

Use of calculators is not permitted.

1. Let

$$f(x) = 198x^4 + 27x^3 - 10x^2 + 47x + 13.$$

Find the divided difference $f[1 \ 2 \ 3 \ 4 \ 5]$.

(1 mark)

Ans.:

2. Let

$$x_0 = 1, \ x_1 = \frac{4}{3}, \ x_2 = \frac{5}{3}, \ x_3 = 2$$

and for i = 0, 1, 2, 3, let $\ell_i(x)$ be the Lagrange interpolation polynomial of degree 3 such that

$$l_i(x_i) = 1, \ l_i(x_i) = 0, \ \text{for } i \neq j.$$

Evaluate

$$l_0\left(\frac{3}{2}\right) + l_1\left(\frac{3}{2}\right) + l_2\left(\frac{3}{2}\right) + l_3\left(\frac{3}{2}\right).$$

(1 mark)

 ${
m Ans.:}$

3. Let $f:[0,1] \to \mathbb{R}$ be such that

$$f(0) = 1, f'(0) = 3, f(1) = 7, f'(1) = 10,$$

where f'(x) denotes the derivative of f at x. Find the cubic polynomial which interpolates f and f' at 0 and at 1. (2 marks)

Ans.:

4. Let $f:[0,7] \to \mathbb{R}$ be such that
$f(0) = 3, \ f(1) = 16, \ f(3) = 108, \ f(7) = 724.$
Find
(a) a polynomial of degree ≤ 2 which interpolates f at $0, 1, 3$,
Ans.:
(b) a polynomial of degree ≤ 3 which interpolates f at $0, 1, 3, 7$.
Ans.:
(1+1 mark)
5. Let $f(x) = \frac{1}{x}$, $x \in [1,3]$ and $p_2(x)$ be the quadratic polynomial which interpolates f at 1, 2, Find the best possible upper bound for $ f - p_2 _{\infty} = \max_{x \in [1,2]} f(x) - p_2(x) $. (2 mark
Ans.:
6. Evaluate $\int_0^4 (x-1)(x-2)(x-4)dx. \tag{2 mark}$

Ans.: