Elementary Numerical Analysis

by

Professor Rekha P. Kulkarni

Department of Mathematics

Indian Institute of Technology Bombay

Model Solutions: Quiz 1

1. Let

$$f(x) = 198x^4 + 27x^3 - 10x^2 + 47x + 13.$$

Find the divided difference $f[1 \ 2 \ 3 \ 4 \ 5]$.

(1 mark)

Ans.: 198

Explanation: $f[1 \ 2 \ 3 \ 4 \ 5] = \frac{f^{(4)}(c)}{4!}$.

2. Let

$$x_0 = 1, \ x_1 = \frac{4}{3}, \ x_2 = \frac{5}{3}, \ x_3 = 2$$

and for i = 0, 1, 2, 3, let $\ell_i(x)$ be the Lagrange interpolation polynomial of degree 3 such that

$$l_i(x_i) = 1, \ l_i(x_i) = 0, \ \text{for } i \neq j.$$

Evaluate

$$l_0\left(\frac{3}{2}\right) + l_1\left(\frac{3}{2}\right) + l_2\left(\frac{3}{2}\right) + l_3\left(\frac{3}{2}\right).$$

(1 mark)

Ans.: 1

Explanation:
$$\sum_{i=0}^{3} l_i(x) = 1.$$

3. Let $f:[0,1] \to \mathbb{R}$ be such that

$$f(0) = 1, f'(0) = 3, f(1) = 7, f'(1) = 10,$$

where f'(x) denotes the derivative of f at x. Find the cubic polynomial which interpolates f and f' at 0 and at 1. (2 marks)

1

Ans.: $1 + 3x + 3x^2 + x^2(x - 1)$.

4. Let $f:[0,7] \to \mathbb{R}$ be such that

$$f(0) = 3$$
, $f(1) = 16$, $f(3) = 108$, $f(7) = 724$.

Find

(a) a polynomial of degree ≤ 2 which interpolates f at 0, 1, 3,

Ans.: 3 + 13x + 11x(x - 1)

(b) a polynomial of degree ≤ 3 which interpolates f at 0, 1, 3, 7.

Ans.:
$$3 + 13x + 11x(x - 1) + x(x - 1)(x - 3)$$
. (1+1 marks)

5. Let $f(x) = \frac{1}{x}$, $x \in [1,3]$ and $p_2(x)$ be the quadratic polynomial which interpolates f at 1, 2, 3. Find the best possible upper bound for $||f - p_2||_{\infty} = \max_{x \in [1,3]} |f(x) - p_2(x)|$. (2 marks)

Ans.: $\frac{2}{3\sqrt{3}}$.

Explanation:

$$f(x) - p_2(x) = \frac{f^{(3)}(c_x)}{3!}(x-1)(x-2)(x-3), ||f^{(3)}||_{\infty} = 6,$$

and

$$\max_{x \in [1,3]} |(x-1)(x-2)(x-3)| = \frac{2}{3\sqrt{3}}.$$

6. Evaluate

$$\int_0^4 (x-1)(x-2)(x-4)dx.$$

(2 marks)

Ans. $-\frac{16}{3}$.

Explanation: Apply Simpson Rule.