Complex Analysis - Video course ## **COURSE OUTLINE** Complex numbers, the topology of the complex plane, the extended complex plane and its representation using the sphere. Complex functions and their mapping properties, their limits, continuity and differentiability, analytic functions, analytic branches of a multiplevalued function. Complex integration, Cauchy's theorems, Cauchy's integral formulae. Power series, Taylor's series, zeroes of analytic functions, Rouche's theorem, open mapping theorem. Mobius transformations and their properties. Isolated singularities and their classification, Laurent's series, Cauchy's residue theorem, the argument principle. ## **COURSE DETAIL** | S. No | Modules/ Lectures | Topics | No of Lectures | |-------|--|---|----------------| | 1. | Introduction (1 lecture) | Introduction and overview of the course, lecture-wise description. | 1 | | | The Algebra Geometry
and Topology of the
Complex Plane
(5 lectures) | Complex numbers,
conjugation, modulus,
argument and
inequalities | 1 | | 2. | | Powers and roots of complex
numbers, geometry in the
complex plane, the extended
complex plane | 1 | | | | Topology of the complex plane: Open sets, closed sets, limit points, isolated points, interior points, boundary points, exterior points, compact sets, connected sets, sequences and series of complex numbers and convergence. | 3 | | | | Introduction to complex functions. | 1 | | | | Limits and continuity. | 1 | | | Complex Functions: | Differentiation and the Cauchy-Riemann equations, analytic functions, elementary functions and their mapping | 4 | # **Mathematics** ## **Pre-requisites:** Single and multi-variable real analysis. #### **Coordinators:** Prof. P. A. S. Sree Krishna **IIT** Guwahati | 3. | Limits, Continuity and
Differentiation
(8 lectures) | functions. | | | |----|---|--|---|--| | | | Complex logarithm multi-
function, analytic branches of
the logarithm multi-function,
complex exponent multi-
functions and their analytic
branches, complex hyperbolic
functions. | 1 | | | | | Problem Session | 1 | | | | | Introducing curves, paths and contours, contour integrals and their properties, fundamental theorem of calculus. | 2 | | | 4. | Complex Integration
Theory
(10 lectures) | Cauchy's theorem as a version of Green's theorem, Cauchy-Goursat theorem for a rectangle, The antiderivative theorem, Cauchy-Goursat theorem for a disc, the deformation theorem. | 4 | | | | | Cauchy's integral formula,
Cauchy's estimate, Liouville's
theorem, the fundamental
theorem of algebra, higher
derivatives of analytic
functions, Morera's theorem. | 3 | | | | | Problem Session | 1 | | | | | Power series, their analyticity,
Taylor's theorem. | 3 | | | 5. | Further Properties of
Analytic Functions
(7 lectures) | Zeroes of analytic functions,
Rouche's theorem. | 2 | | | | | Open mapping theorem,
maximum modulus theorem. | 2 | | | 6. | Mobius Transformations
(3 lectures) | Properties of Mobius transformations. | 2 | | | | (2.000.00) | Problem Session | 1 | | | | | Isolated singularities, removable singularities. | 1 | | | | | Poles, classification of isolated singularities. | 2 | |----|---|--|---| | 7. | Isolated Singularities and
Residue Theorem
(6 lectures) | Casoratti-Weierstrass
theorem, Laurent's theorem. | 1 | | | | Residue theorem, the argument principle | 1 | | | | Problem Session | 1 | | | | 40 | | ## References: - H. A. Priestley, Introduction to Complex Analysis, 2nd edition (Indian), Oxford, 2006. - L. V. Ahlfors, Complex Analysis, 3rd edition, McGraw Hill, 2000. - J. E. Marsden and M. J. Hoffman, Basic Complex Analysis, 3rd edition, W.H. Freeman, 1999. - J. W. Brown and R. V. Churchill, Complex Variables and Applications, 7th edition, McGraw Hill, 2003. - J. H. Mathews and R.W. Howell, Complex Analysis for Mathematics and Engineering, 3rd edition, Narosa, 1998. - T. Needham, Visual Complex Analysis, Oxford, 1997. A joint venture by IISc and IITs, funded by MHRD, Govt of India http://nptel.iitm.ac.in