LINEAR PROGRAMMING AND ITS EXTENSIONS (NPTEL) ASSIGNMENT

1. Consider the standard LPP(3) with extreme points X_1, X_2, X_3, X_4 and extreme directions \vec{d}_1, \vec{d}_2 and \vec{d}_3 such that

$$C^t X_1 = 5$$
, $C^t X_2 = 7$, $C^t X_3 = 4 = C^t X_4$, $C^t \vec{d}_1 = 0$, $C^t \vec{d}_2 = 0$ and $C^t d_3 = 4$. Characterise all the optimal solutions, of the LPP...

Note: Finite optimal solutions exist even though directions are present in the feasible region. Try to explain why?

2. Use a linear programming formulation to show that the constraints

$$\begin{array}{c} 2x_1 - x_2 - x_3 + 2x_4 + x_5 \leq 3 \\ -3x_4 + x_2 + 4x_3 - 5x_4 - 2x_5 \leq -4, \ x_j \geq 0 \forall j \\ \text{imply} \quad -6x_4 + 8x_2 + 7x_3 - 9x_4 - 5x_5 > -18. \end{array}$$

3. Obtain the set of alternate optimal solutions given the following optimal tableau:

\mathbf{x}_1	\mathbf{X}_{2}	X_3	X_4	X_5	X_6	RHS
0	0	0	0	2	3	9
1	0	2	-1	-1	1	4
0	1	-2	1	2	3	5

4. Consider the problem:

Min
$$2x_1 - x_2 - 5x_3 - 3x_4$$

s.t. $x_1 + 2x_2 + 4x_3 - x_4 = 6$

$$2x_1 + 3x_2 - x_3 + x_4 = 12$$

$$x_1 + x_3 + x_4 = 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Find a bfs with the basic variables as $x_1, x_2 & x_4$. Is this solution optimal?

5. The starting and current tableaux of a given LPP are shown. Find the values of the unknowns a through ℓ

Starting Tableau

	Z	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	X_5	RHS
$z_i - c_i$	1	a	1	-3	0	0	0
<i>y y</i>	0	b	C	d	1	0	6
	0	-1	2	e	0	1	1

Current Tableau

	Z	\mathbf{X}_1	\mathbf{X}_2	X_3	X_4	X_5	RHS
$z_j - c_j$	1	0	$-\frac{1}{3}$	i	k	1	-4
	0	g	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	0	f
	0	h	I	$-\frac{1}{3}$	$\frac{1}{3}$	1	3

6. Read each of the following statements carefully and check whether it is true or false. Justify your answer by constructing a

simple illustrative example, if possible, or by a simple proof. In all these statements, problem (1) is the LP.

Minimize
$$z(x)=cx$$

Subject to $Ax=b$
 $x \ge 0$

where A is a matrix of order $m \times n$. **K** is the set of feasible solutions of this problem (1) f(b) is the minimum objective value in this problem, as a function of the right – hand side constant vector, b.

- 1. The number of positive x_j by BFS of (1) can never exceed the rank of A.
- 2. The unboundedness criterion will never be satisfied while solving the Phase I problem.
- 3. If (1) is feasible, termination occurs in solving the Phase I problem associated with (1) only when all the artificial variables leave the basic vector.
- 4. If a tie occurs in the pivot row choice during a pivot step while solving (1) by the simplex algorithm, the BFS obtained after this pivot step is degenerate.
- 5. Simplex algorithm moves from an extreme point of K only in a no degenerate pivot step.
- 6. In solving an LP by the simplex algorithm, a new feasible solution is generated after every pivot step.
- 7. Let the rank of A in (1) be m. If (1) has an optimum solution, there must exist an optimum basis. Every basis consists of m column vectors and a pivot step changes one column vector in a basis. Hence starting from a feasible basis, the simplex algorithm finds an optimum basis in at most m pivot steps.
- 8. Every feasible solution of (1) in which m variables are positive is a BFS.

- 9. If \overline{x} and \overline{y} are two adjacent BFSs of (1), the total number of variables that are positive in either \overline{x} or \overline{y} , or both, is at most m+1.
- 10. No feasible solution of (1) in which m+2 or more variables are positive can lie on an edge of K.
- 11. Every convex set has an extreme point.
- 12. Every nonempty convex polytope has an extreme point.
- 13. If (1) has an optimum solution, K must be a bounded set.
- 14. An LP can have more than one optimum solution iff it is degenerate.
- 15. The total number of optimum feasible solutions of any LP is always finite.
- 16. The total number of BFSs of any LP is always finite.
- 17. The set of optimum solutions of any LP is always a bounded set.
- 18. If (1) has an optimum solution in which m+1 or more variables are positive, it must have an uncountable number of optimum solutions.
- 19. If rank of *A* is *m*, and (1) is nondegenerate, every feasible solution in which exactly *m* variables are positive, must be a BFS.
- 20. While solving (1) by the simplex algorithm, if the BFS in the beginning of a pivot step is degenerate, the objective value remains unchanged in this pivot step.
 - 21. Can a vector which has just left the basis in the simplex algorithm recenter on the very next pivot? Hint. If x_{B_r} is the out going variable, compute its new $C_{B_r} Z_{B_r}$ and show that it will be positive.