Probability and Statistics Test Set 6

- 1. Let (X,Y) have the joint pdf $f(x,y) = e^{-(x+y)}$, x > 0, y > 0. Check whether X and Y are independent? Find P(1 < X Y < 2), P(X < 2Y | X < 3Y), P(1 < Y < 2 | X = 2). Also find c such that P(X Y < c) = 0.25.
- 2. Let (X,Y) have the joint pdf f(x,y) = x + y, 0 < x < 1, 0 < y < 1. Are X and Y independent? Find V(X+Y), Corr(X,Y), V(Y| X=x) and V(X | Y = y).
- 3. Let (X,Y) have the joint probability density function

 $f_{X,Y}(x, y) = (2 - x - y), 0 < x < 1, 0 < y < 1.$

Find E(Y | X=x), Var(Y | X=x), Cov(X,Y), Var(X | Y=y) and Corr(X, Y).

- 4. The age of siblings at a certain community school can be approximated by a BVN(11, 13, 16, 16, 0.8) (the first variable corresponds to the younger child and the second to his/her sibling). Find
- a. the proportion of younger siblings below 10 years.
- b. The proportion of elder siblings over 15 having younger sibling of age 12.
- 5. The life of a equipment (X) and the width of a component in it (Y) are distributed as a bivariate normal with $\mu_1 = 2$ years, $\mu_2 = 0.2$ cm, $\sigma_1 = 0.5$, $\sigma_2 = 0.05$, $\rho = 0.85$. If the width of the component is 0.15 cm, what is the probability that the equipment will last 2.5 years?
- 6. Let (X, Y) be continuous with the joint probability density function given by $f_{X,Y}(x, y) = \frac{1}{y} e^{-(y + \frac{x}{y})}, x > 0, y > 0.$

Find the marginal density of Y and the conditional density of X given Y = y. Hence, or otherwise, calculate, E(Y), E(X), Var(Y), Var(X), Cov(X, Y) and Corr(X, Y).

- 7. In a probability class the marks of students in two consecutive tests are seen to follow a bivariate normal distribution with $\mu_1 = 50$, $\mu_2 = 70$, $\sigma_1 = 4$, $\sigma_2 = 5$ and $\rho = 0.9$. If a student scores 60 on the first test, what is the probability that he/she will score more than 80 in the second one? If $\rho = -0.9$, what will be this probability?
- 8. The average temperatures recorded (in Celsius) at a weather station in December is a random variable X and the average temperatures recorded at the same station in January is a random variable Y. Let (X, Y) have a bivariate normal distribution with parameters $\mu_1 = 4$, $\mu_2 = 2$, $\sigma_1 = 0.8$, $\sigma_2 = 0.6$, $\rho = 0.7$. Find P(X ≤ 3), P(Y $\leq 1 \mid X = 3$) and E(X \mid Y = 1).
- 9. Let X and Y have joint density function

$$f(x, y) = 1 - \alpha(1 - 2x)(1 - 2y), \quad 0 < x < 1, 0 < y < 1;$$

= 0, otherwise.

Find correlation between X and Y and hence determine the valid range of α . Show that X and Y are independent if and only if they are uncorrelated.

10. Let X denote the number of functions and Y denote the maximum number of lines (in 100s) in a 'C' program by an expert programmer for an organization. Assume that the joint probability mass function of (X,Y) is given by

X\ Y	1	2	3	4
0	0.05	0.10	0.05	0.01
1	0.09	0.12	0.08	0.03
2	0.06	0.10	0.10	0.01
3	0.05	0.07	0.06	0.02

- a. Find the probability that a randomly selected programme contains at most two functions and has at most 100 lines.
- b. Find marginal probability mass functions of X and Y. Calculate $\rho_{X,Y}$.
- c. Find the probability that a randomly selected programme contains at least two functions given that it contains at least one hundred lines.
- 11. Let X denote the purchase value of a share and Y the value at sale for an expert investor (the maximum values are scaled to unity). Assume that the joint density of X and Y is given by

$$f(x, y) = k x y$$
, if $0 < 2y < x < 1$
= 0, elsewhere.

- (a) Find the value of k.
- (b) Find the probability that the investor is able to sell a randomly selected share at a price four times more than the purchase price.
- (c) Find the expected sale price if the purchase price is below 1/2.
- (d) Find the probability that purchase price is below $\frac{1}{4}$ and the sale price is more than $\frac{3}{4}$.
- (e) Find the conditional distribution of X given $Y = \frac{1}{2}$.
- (f) Find coefficient of correlation between X and Y.
- 12. Let (X, Y) be continuous with the joint probability density function

$$f(x, y) = \frac{1}{4}(1 + xy), |x| < 1, |y| < 1$$

= 0, otherwise.

Find P(2X < Y), P($|X+Y| < \frac{1}{2}$) and $\rho_{X,Y}$