Probability and Statistics Test Set 8

- 1. The life of a pencil cell is a random variable with mean 60 hrs and standard deviation 15 hrs. A cell is used until it fails, at which point it is replaced by a new one. Assuming 20 such cells are available with independent lives find the approximate probability (using central limit theorem) that over 1300 hrs of use can be obtained.
- 2. Let X, the lives of electric coil used in heater have mean μ and s.d. 120 hours. n of these coils are put on test till they fail, resulting in observations $X_1, ..., X_n$ find the minimum value of n so that the probability that \overline{X} differs by μ by less than 60 hours is at least 0.95?
- 3. Let X₁, ..., X₁₁ be i.i.d. N(μ , σ^2), find P($\sqrt{11} | \overline{X} \mu | \le 1.796$ S).
- 4. Let $X_1, ..., X_n, X_{n+1}, X_{n+2}$ be i.i.d. $N(\mu, \sigma^2)$ and let \overline{X} and S^2 denote the sample mean and sample variance based on $X_1, ..., X_n$. Find the distribution of $\sqrt{\frac{n}{2(n+2)}} \left(\frac{X_{n+1} + X_{n+2} 2\overline{X}}{S}\right)$.
- 5. Let $X_1, ..., X_m$ be a random sample from $N(\mu_1, \sigma^2)$ population and $Y_1, ..., Y_n$ be another independent random sample from $N(\mu_2, \sigma^2)$ population. Let $\overline{X}, \overline{Y}, S_1^2, S_2^2$ be the sample means and sample variances based on X and Y-samples respectively. Determine the distribution of

U =
$$\frac{2(\overline{X} - \mu_1) + 3(\overline{Y} - \mu_2)}{S\sqrt{(4/m + 9/n)}}$$
, where S² = $\frac{(m-1)S_x^2 + (n-1)S_y^2}{(m+n-2)}$.

- 6. Consider two independent samples- the first of size 12 from a normal population with variance 6 and the second of size 6 from a normal population with variance 3. Compute the probability that the sample variance from the second sample exceeds the one from the first.
- 7. The temperature at which certain chemical reaction takes place is normally distributed with variance σ^2 . A random sample of size n has the sample variance S². How many observations are required to ensure that $P(S^2/\sigma^2 \le 1.8) \ge 0.99$?
- 8. Let X_1 , X_2 , X_3 , X_4 be independent $N(0, \sigma^2)$ random variables. Find $P(X_1^2 + X_2^2 + X_3^2 + X_4^2 \le \sigma^2)$.
- 9. Let X₁, ..., X_n be a random sample from N(μ , σ^2) population. For 1 < k < n, define $U = \frac{1}{k} \sum_{i=1}^{k} X_i, V = \frac{1}{n-k} \sum_{i=k+1}^{n} X_i, S^2 = \frac{1}{k-1} \sum_{i=1}^{k} (X_i - U)^2, T^2 = \frac{1}{n-k-1} \sum_{i=k+1}^{n} (X_i - V)^2.$

Find the distributions of

$$W_{1} = U - V, W_{2} = \frac{(k-1)S^{2} + (n-k-1)T^{2}}{\sigma^{2}}, W_{3} = \frac{S^{2}}{T^{2}}, W_{4} = \frac{\sqrt{k}(U-\mu)}{T},$$
$$W_{5} = \frac{\sqrt{(n-k)}(V-\mu)}{T} \text{ and } W_{6} = \sqrt{\frac{k(n-k)}{n(n-2)W_{2}}}(U-V).$$