Probability and Statistics Hints/Solutions to Test Set 1

- 1. Find $\liminf_{n} E_{n}$ and $\limsup_{n} E_{n}$, if E_{n} is given by
 - (i) $\liminf_{n} E_{n} = \phi$, $\limsup_{n} E_{n} = \phi$. Hence $\lim_{n} E_{n}$ exists.
 - (ii) $\liminf_{n} E_{n} = (0, 1)$, $\limsup_{n} E_{n} = (0, 1)$. Hence $\lim_{n} E_{n}$ exists.

(iii) $\liminf_{n} E_{n} = \{0, 1\}$, $\limsup_{n} E_{n} = \{x : x \text{ is rational in } [0, 1]\}$. Hence $\lim_{n} E_{n}$ does not exist.

- (iv) $\liminf_{n} E_{n} = \left\{ (x, y) : \frac{1}{4} \le x \le \frac{3}{4}, y = \frac{1}{2} \right\},\$ $\limsup_{n} E_{n} = \left\{ (x, y) : 0 \le \frac{3}{4}, \frac{1}{2} \le y \le 1 \right\} \cup \left\{ (x, y) : \frac{1}{4} \le x \le 1, 0 \le y \le \frac{1}{2} \right\}.$
- - (iv)Not necessarily a σ -ring.
- 3. It is an algebra. Use definition to prove the statement.
- 4. Use definition to prove the first statement. Example for the second part:

Let $\Box_1 = \{\phi, \{a\}\}, \Box_2 = \{\phi, \{b\}\}$. Then \Box_1 and \Box_2 are rings but $\Box_1 \bigcup \Box_2$ is not a ring.

- 5. Use definition to prove the statement.
- 6. Identify the following classes of subsets of X (X is an uncountable set) as ring and/or algebra:
 - (i) ring and algebra
 - (ii) $\{\phi, A, X\}$ ring but not algebra
 - (iii) $\{\phi, A, A^{C}, X\}$ ring and algebra
 - (iv) P(X) ring and algebra
 - (v) The class of all finite subsets of X is ring but not algebra
 - (vi) The class of all countable subsets of X is a ring but not algebra.