Laminar Internal Flows - 114 to 120 3

1. Show that the axial velocity profle in a fully developed flow in an annulus is given by

$$
\frac{u}{\overline{u}} = \frac{2}{A}\,\left[1 - (\frac{r}{r_o})^2 + B \ln{(\frac{r}{r_o})}\,\right]
$$

whrer $B = ((r^*)^2 - 1)/\ln r^*$, $A = 1 + (r^*)^2$ - B and $r^* = r_i/r_o$. Hence
show that the maximum velocity will occur at $(r_m^*)^2 = 0.5B$ and $fRe =$ $16(1-(r^*)^2)/A$

2. Determine Fully-Developed Pressure drop per unit length (N/m^3) of the following ducts. In each case $Re_{D_{th}} = 500$. Take $\rho = 1000$ kg π^3 , $\mu = 8 \times 10^{-4}$ kg/m-s. (Hint: Wherever possible, use solns given in the class. Else, evaluate from series solutions.)

9

Figure 5: Duct of Rhombic cross-section

- (a) Rectangular duct: ($b = 1$ cm, $a = 4$ cm)
- (b) Annulus ($r_i = 1$ cm, $r_o = 2.2$ cm)
- (c) Annular Sector Duct ($r_i = 1$ cm, $r_o = 2.2$ cm, $\theta_0 = 60$ degrees)
- (d) Equilateral Triangle: ($a = 2$ cm)
- (e) Equilateral Triangle with Rounded Radius: ($a = 2$ cm, $r / a =$ $0.1)$
- 3. Using Kantarovich method, derive analytic expression for $(f Re)_{D_h} = F(x_0, b/a, \Phi)$ for the duct shown in figure 5.
- 4. Write a general computer program for predicting $(fRe)_{D_h}$ and Nu_{D_h} in ducts of arbitrary cross section using the method described in lectures 16 and 18.
- 5. Using the computer program developed in the previous problem, calculate $(f Re)_{D_h}$ and Nu_{D_h} for the duct shown in figure 5.
- 6. Consider FD flow and heat transfer between two parallel plates. Include effect of viscous dissipation. Constant wall heat flux q_w is applied at both surfaces. Show that $(f Re)_{D_h} = 24$ and

$$
Nu_{D_h} = \frac{140}{17 + 108\,Br} \qquad \text{where} \quad Br \equiv \frac{\mu\,\overline{u}^2}{q_w\,D_h}
$$

- 7. A heat exchanger is to be designed to cool lubricating oil ($\rho = 785kg/m^3$, $k = 0.12 W / m-K$, $\nu = 0.0247 m^2/hr$ and $Cp = 2 kJ / kg - K$ from 60 C to 40 C. The oil velocity is 0.75 m / s and the tube surface temperature is 27 C. Calculate the required tube $($ dia $6 \text{ mm})$ length.
- 8. Water at 35 C enters a tube (2.5 cm ID) with a velocity 1.25 m/s. The tube wall temperature is constant at 95 C. Calculate the tube-length necessary to raise water temperature by 45 C. Also calculate pumping power. Use a) Dittus-Boelter correlation b) Expression for Nu derived from universal law.
- 9. Liquid mercury flows through a long tube (2.5 cm dia) with a velocity 1 m/s. Calcualte h for constant wall heat flux ($\rho = 13264$ kg / m^3 , $Cp = 0.1365 \text{ kJ/kg-K}, k = 11.5 \text{ W/m-K}, \mu = 9 \times 10^{-4} \text{ N-s/m}^2$
- 10. Consider flow of air ($Pr = 0.7$) between two parallel plates 1 m wide and 2.5 cm apart. The top plate receives heat flux $q_{top} = 650$ W/m² whereas the bottom plate is insulated. If $Re_{D_h} = 500$ and air enters the passage with $T_{in} = 32^{\circ}\text{C}$, calculate and plot variations of $T_{w,top}$ and $T_{w,bottom}$ till $x^+=0.1$ (Hint: Use results of slide 4, 119).
- 11. Consider flow of air in a passage formed by two parallel plates $W = 1$ m wide, $L = 1.4$ m long and separated by distance 3 mm. Heat flux at both the plates varies as

$$
q_w = 950 + 2500 \sin(\frac{\pi x}{L}) \qquad (\frac{W}{m^2})
$$

The air inlet temperature is 50^0 C and system pressure is 7 bar. If the air mass flux is 250 kg/m²-hr, calculate and plot variation of T_b , T_w and Nu_x with axial distance x (m). Evaluate properties at 100^oC.