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Continuum Approximation L22( 1
20)

1 In spite of irregular motion, is continuum approximation
valid in turbulent flows ? In other words, can the fluctuations
split the fluid ?

2 In turbulent flows, the scales of velocity fluctuations vary
from as high as that of the mean flow ( 1 cm/s to 1 m/s, say
) to very low scales ( that are governed by the presence of
molecular viscosity). The associated length scales vary
from as high as the mean flow dimension ( BL thickness δ
or pipe radius R ) to a very small fraction of the mean
dimension.

3 The molecular velocity in air, for example, is of the order of
50 m/s and the mean-free-path-length is of the order of
10−4 mm << δ or R.

4 Also, turbulence frequencies vary between 1 and 10000
sec−1 whereas molecular frequencies are about 5× 109

sec−1
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Main Postulate - L22( 2
20)

1 The numbers of the previous slide suggest that the fluid
viscosity will continue to influence events in a turbulent flow
in two ways.

1 Firstly, by causing diffusion of the transported property
2 Secondly, through dissipation of energy of the fluctuations (

to heat ) since the turbulent fluctuations are indeed killed by
the action of viscosity and fluid continuum is maintained.

2 A mechanism must therefore exist that feeds energy from
the mean motion to sustain turbulence.

3 Study of this mechanism reveals that in vigourously
turbulent flow, the diffusive role of viscosity is marginal, the
viscosity plays its principal role through energy dissipation.

4 This is in contrast to what occurs in laminar flow where the
diffusive influence dominates over the dissipative one
unless the fluid viscosity was high.
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Instantaneous KE Eqn - 1 - L22( 3
20)

The Eqn for IKE Ê ≡ ûi ûi/ 2 is derived from the N-S Eqns by
first multiplying instantaneous momentum equations by ûi and
then adding the three equations.

ρ
DÊ
Dt

= − ∂

∂xi
(p̂ûi) +

∂

∂xi
(ûj τ̂ij)− µΦ̂v

τ̂ij = µ Ŝij = µ

[
∂ûi

∂xj
+

∂ûj

∂xi

]
µΦ̂v = τ̂ij

∂ûi

∂xj
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Mean KE Eqn - 2 - L22( 4
20)

The Eqn for MKE ( E ≡ ui ui/ 2 ) is derived from time-averaged
N-S Eqns by first multiplying by ui and then adding the three
equations.

ρ
DE
Dt

= − ∂

∂xi
(pui) +

∂

∂xj
(τij ui)

(a) (b) (c)

+
∂

∂xj
(− ρu′

i u
′
j ui)− µΦv − (−ρ u′

i u
′
j

∂ui

∂xj
)

(d) (e) (f )

The total rate of change of mean E ( a ) = the rate of work done
by pressure forces ( b) + by viscous stresses ( c ) + by turbulent
stresses ( d ) - the rate of energy dissipated by viscous action (
e ) - the rate of energy transferred to turbulence by the mean
motion ( f ).
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Turbulent KE Eqn - 3 - L22( 5
20)

The Eqn for TKE (e ≡ u′
i u′

i / 2) is derived by first time-averaging
Eqn for IKE ( Ê ).

ρ
D(E + e)

Dt
+

∂

∂xj
(ui ρu′

i u
′
j ) +

∂

∂xj
(ρu′

j u
′
i u′

i /2) =

− ∂

∂xi
(pui + p′u′

i ) +
∂

∂xj
(τij ui + τ

′
ij u′i)− τij

∂ui

∂xj
− τ

′
ij

∂u′
i

∂xj

Then, the Eqn for MKE ( E ) is subtracted

ρ
De
Dt

= − ∂

∂xj
u′

j (p
′ + ρ u′

i u′
i /2) + (−ρu′

i u
′
j

∂ui

∂xj
)

(A) (B) (C)

+
∂

∂xj
(u′

j τ
′
ij)− τ

′
ij

∂u′
i

∂xj

(D) (E) ( next slide )
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Comments on TKE - 1 - L22( 6
20)

The rate of change of TKE e ( A ) =
+ the rate of (convective) diffusion of total fluctuating pressure
energy (p

′
+ ρ u

′

i u
′

i /2) by velocity fluctuation ( B )
+ the rate of energy is transferred from mean motion to
turbulence by the turbulent stresses ( C )
+ the rate of work done by viscous turbulent stresses ( D )
- the rate of dissipation of energy by the turbulent motion ( E ).

1 Eqn of MKE ( E ) shows that E is lost in two ways
1 Firstly, by viscous dissipation ( term e )
2 Secondly, by ( term f ) which appears as a positive

contributor to TKE via ( term C ). Hence, term C is called
Production or Generation term

2 In a laminar flow, E is directly dissipated into heat. In a
turbulent flow, E is first transferred to sustain turbulence
before finally
dissipating to heat through ( term E )
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Comments on TKE - 2 - L22( 7
20)

1 Besides dissipation, MKE (E) and TKE (e) experiences
convective-diffusion of energy through terms b, c, d, B and
D. These terms merely redistribute ( spatially ) energy but
make zero net contribution to the integral energy balance as
shown below.

2 If the turbulent flow bounded by walls ( ui = u
′

i = 0 ) or by a
wall and a symmetry plane ( τij = τ

′

ij = 0 ) is considered and
equation for TKE is integrated over flow cross-section

ρ
D
Dt

∫
V

e dV =

∫
V

{
(−ρu′

i u
′
j

∂ui

∂xj
)− (τ

′
ij

∂u′
i

∂xj
)

}
dV

Net change = Net ( Production - Dissipation )

3 Net change > 0 when Production > Dissipation and
vice-versa. The near-balance represents Transition
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Scale Analysis - 1 - L22( 8
20)

1 Thus, turbulence derives its sustenance by drawing energy
from mean motion. How does this transfer take place ?

2 A laminar BL is characterised by two length scales δ and
distance x such that (δ/x) ∝ Re−0.5

x << 1. The relevant
time scale is t = x/ U∞. Therefore, δ ∝ (ν t)0.5. More
importantly, δ could be discovered only because of the
inclusion of the transverse diffusion term ( µ ∂2u/∂y2). In
other words, the smaller length scale δ is associated with
the effect of viscosity.

3 In a turbulent BL , motions of several scales occur
simultaneously. Let V

′
mean represent velocity fluctuation in

the direction y away from the wall . Then, transverse
momentum is carried out by −ρu′V ′

mean >> µ ∂u/∂y . And,
d δ/d t ∝ V

′
mean or, δ ∝ V

′
mean t = V

′
mean x/ U∞. Thus,

diffusion time scale δ/ V
′
mean ' mean time scale (x/ U∞ )

and V
′
mean ≡ large scale.
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Scale Analysis - 2 - L22( 9
20)

1 Recall that the dissipation process (ρ ε = τ
′
ij ∂u′

i /∂xj )
essentially kills or smoothens out velocity fluctuations due
to action of viscosity and lε << lmean and tε << tmean.

2 At such very small scales, turbulent fluctuations in all three
directions could be considered statistically equal. That is,

u′2 = v ′2 = w ′2 and their spatial variations are also small.
3 Such a small scale turbulence structure is called

homogeneous and isotropic. It is characterised in
association with ε by Kolmogorov Scales.

u
′

ε = v
′

ε = w
′

ε = (ν ε)0.25 (velocity scale)

tε = (
ν

ε
)0.50 (time scale) lε = (

ν3

ε
)0.25 (length scale)

Ret ,ε ≡
(l v

′
)ε

ν
= 1 << Ret ,mean =

(l V
′
)mean

ν
' O(100)
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Scale Analysis - 3 - L22( 10
20)

1 Thus, we have provided relative estimates of largest and
smallest fluctuations.

2 Whenever large scale fluctuations are present, small scale
motions are automatically created so that viscosity can play
its major role via energy dissipation.

3 The creation of small scale motions is believed to be caused
by the non-linear convective terms in the N-S equations.

4 That this creation is not a one-step process but takes place
in a large number of continuous steps will be shortly
demonstrated.

5 The large scale fluctuations thus create smaller scale
fluctuations which in turn transfer their energy to produce
even smaller scale fluctuations and so on till the scales are
so small that non-linear terms become unimportant and
viscosity takes over to produce an isotropic structure of
turbulence.
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Spatial Correlation - 1 - L22( 11
20)

In turbulence literature, the idea
of scales is often expressed
through the notion of an eddy.
Whenever a fluctuation occurs,
it can be expected to influence
events over a zone that extends
both spatially and in time. The
eddy , notionally represents the
size of this zone.

Consider two points at positions
~r1 and ~r2 with ~r = ~r2 − ~r1. Then,
let u

′

i at ~r1 (x1, x2, x3) and u
′

j at
~r2(x1 + r , x2, x3) be the velocity
fluctuations at the same time
instant

r

1.0

R
1

1
= 

 f 
 ( 

 r
  )

r

1 (  r 1 ) U1 (  r 2 )

rΛgf

R
2

2

= R
3

3

=

g 
 ( 

 r
  )

1.0

U U2(  r 1 ) (  r 2 )2

r

(  a  )    LONGITUDINAL (  b  )   LATERAL

U

Λ

Figure: Here λf = lf and λg = lg

Define Spatial correlation
coefficient

Rij =
Bij√

Bii

√
Bjj

→ Bij = u′
i u′

j

Rij ( tensor ) = F ( ~r1, ~r , time )
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Spatial Correlation - 2 - L22( 12
20)

1 Rij has nine components in general. Being a coefficient, Rij

will be bounded by -1 and +1.
2 At these two extremes, the correlation between u

′

i and u
′

j is
said to be perfect. When Rij = 0, no correlation exists
between u

′

i and u
′

j which would understandably be the case
as ~r →∞.

3 For 0 < |Rij | < 1, the correlation is said to be moderate.
4 It is tedious to measure Rij for a real non-homogeneous,

non-isotropic turbulent flow since nine components must be
measured in all directions for different values of ~r and ~r1.
Usually, only Rij (~r1, 0, 0) are measured.
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Spatial Correlation - 3 - L22( 13
20)

1 In homogeneous turbulence , all statistical correlations
∂(φ

′
1 φ

′
2)/∂xi = 0 but, ∂(φ1)/∂xi and ∂(φ2)/∂xi can be finite.

2 Isotropic turbulence implies that any relation between
turbulence quantities must be constant ( invariant ) under
rotation of the coordinate system and under reflection with
respect to the coordinate system. As such, turbulence
cannot be isotropic unless it was also homogeneous.

3 For a homogeneous and isotropic turbulence , only R11, R22

and, R33 are finite since Rij = 0 for i 6= j . For 180o rotation
about x1-axis, from reflection condition,
u′

1 u′
2 = u′

1 (−u′
2) = − u′

1 u′
2. This is true only if u′

1 u′
2 = 0.

4 Further, R22 = R33 since the coordinate system is invariant
under rotation about x1-axis ( say ). The R11 ≡ f (r)
coefficient parallel to x1 is called the longitudinal coefficient
and coefficient R22 = R33 ≡ g(r) is called the lateral
coefficient. ( see slide 11 )
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Spatial Correlation - 4 - L22( 14
20)

1 Both f ( r ) and g ( r ) decline to zero as r →∞. For a given
r, f(r) is greater than g(r).

2 The coefficient curves are nearly parabolic near r = 0 and
therefore symmetric about r = 0. Expanding f(r) and g(r) in
Taylor’s series about r = 0

f (r) ' 1− (
r
lf
)2 + . . . g(r) ' 1− (

r
lg

)2 + . . .

l2
f = − 2 (

∂2f
∂r 2

|r=0 )−1 l2
g = − 2 (

∂2g
∂r 2

|r=0 )−1

3 Hence, lf and lg in Taylor’s micro-scales range,

lf ≡

[
2 (u′

1)
2

(∂u′
1/∂x1)2

]0.5

lg ≡

[
2 (u′

2)
2

(∂u′
2/∂x1)2

]0.5
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Micro & Integarl Length Scales - L22( 15
20)

1 In lf and lg, derivatives of velocity fluctuations are difficult to
measure

2 None-the-less, if this local spatial change is imagined to
have been caused by the smallest scales of motion, then lf
and lg can be regarded as the average dimensions of the
range of small scale motions.

3 Similarly, we can define Integral scales as

lint ,f =

∫ ∞

0
f (r) dr and lint ,g =

∫ ∞

0
g(r) dr

4 Thus, we have 4 length scales lf , lg, lint ,f and lint ,g in a simple
homogeneous isotropic turbulence besides lε at the
smallest Kolmogorov scales where viscosity kills turbulence
and isotropy prevails.

() January 17, 2011 17 / 22



Estimate of ε - L22( 16
20)

1 From slide 9, lε = (ν3/ε)0.25. The dissipation rate ε can be
estimated by noting that in isotropic turbulence1,

(
∂u′

1

∂x1
)2 = (

∂u′
2

∂x2
)2 =

1
2

(
∂u′

1

∂x2
)2 =

1
2

(
∂u′

2

∂x1
)2 = etc.

2 Hence, lf and lg are related ( see slide 14 ) to ε as

ρ ε = µ
[
∂u′

i /∂xj + ∂u′
j /∂xi

]2
(definition)

ε = 15 ν (
∂u′

1

∂x1
)2 = 30 ν (

u
′

1

lf
)2 = 15 ν (

u
′

2

lg
)2

1Hinze J O - Turbulence, an Introduction to its Mechanism and Theory ,
McGraw-Hill, New York, 1959

() January 17, 2011 18 / 22



Ratio of Strain Rates - L22( 17
20)

1 To estimate lint , consider homogeneous pure shear flow in
which the strain rate Sij = constant . Then, from TKE eqn,
setting derivatives of all statistical relations to zero

−ρ u′
i u

′
j

∂ui

∂xj
= τ

′
ij

∂u′
i

∂xj
= ρ ε ( Prod = Diss )

or, − u′
i u

′
j (Sij/2) = ν sij sij/2 = ε

2 The LHS of this Eqn is associated with large scale motion.
Hence

−u′
i u′

j (Sij/2) ' (V
′
)2 (V

′
/lint) ' (V

′
)3/lint

ε = ν sij sij/2 ' (V
′
)3/lint (Imp result)

sij sij

Sij Sij
' (V

′
)3/(lint ν)

(V ′/lint)2
=

V
′
lint

ν
= Ret ,lint → O(100)
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Comparison of Scales - L22( 18
20)

From the results of previous 2 slides,
1 Taylor and Kolmogorov scales are related as

tf =
lf
u′

1

=

√
30 ν

ε
=
√

30 tε
lf
lε

=

√
30 u

′

1

(ν ε)0.25

tg =
lg
u′

2

=

√
15 ν

ε
=
√

15 tε
lg
lε

=

√
15 u

′

2

(ν ε)0.25

2 Integral and Taylor scales are related as

ε ' (V
′
)3

lint
' 15 ν (

u
′

2

lg
)2 → u

′

2 = A V
′

(say, with) A > 1

lg
lint

' A
√

15
√

(
ν

V ′ lint
) =

A
√

15
(Ret ,lint )

0.5
→

tg
tint

=

√
15

Ret ,int

tε
tint

' (Ret ,lint )
−0.5 and (lε < lf ,g < lint) and (tε < tf ,g < tint)

() January 17, 2011 20 / 22



Auto-Correlation - L22( 19
20)

To estimate the timescale of a
turbulent eddy

Rij (xk , ∆ t) =
u′

i (xk , t) u′
j (xk , t + ∆t)√

(u′
i )

2
√

(u′
j )

2

τmicro = − (
1
2

∂2R
∂t2

|∆ t=0 )−0.5

= u
′

i

[
(
∂u

′

i

∂t
)∆ t=0

]−1

τint =

∫ ∞

0
Rij d(∆ t)

In Reynolds’s averaging
tmax >> τint ( see previous
lecture )

1.0

R
ij

(  
   

   
   

)
∆

t

∆ t

∆ t

Ui Uj

t

(  t  )

Λ

(  t  +   ∆ t )

The time derivatives of
fluctuations at a fixed point are
simpler to measure. Taylor’s
Hypothesis states that if
u1 >> u

′

1, then
∂u

′

1/∂t = − u1 ∂u
′

1/∂x1. Hence
R11(x1)dx1 = u1 R11(∆t) dt and
lint = u1 τint
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Final comment - L22( 20
20)

1 We have shown how turbulence, once generated, sustains
itself by creating fluctuations of ever smaller and smaller
length and time scales.

2 This was shown
1 Firstly from observing terms in Kinetic Energy Equations
2 Secondly from transverse momentum transfer process in a

boundary layer
3 Thirdly, from scale analysis

3 We have shown that although ε is associated with very
small scale motions, its magnitude can be estimated from
large scale motion . This fact is extensively used in
turbulence modeling of RANS equations.

4 Length and time scales of eddies are easier to measure
from Auto-correlation.

5 Next lecture deals with spectral analysis and vorticity
dynamics .
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