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Spectral Analysis L23( 1
18)

1 In the previous lecture, we discovered the largest ( lint ),
intermediate ( Taylor micro-scales lf ,g ) and the smallest
( Komogorov lε ) scales or eddies.

2 Spectral analysis explains how turbulence energy is
distributed among the range of scales and how the energy
exchange between eddies of different scales takes place.

3 Spectra are decompositions of a non-linear function into
waves of different wavelengths ( or periods ).

4 The value of the spectrum at a given wavelength ( or
frequency ) is the mean energy in that wave.

5 Spectral analysis leads to the understanding that turbulence
receives its energy at the large scales, and while its energy
dissipates at very small scales; there also exist waves
within a range of wavelengths ( called the inertial range )
which are not directly affected by the sustenance
mechanism of turbulence.
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Main Postulate - 1 - L23( 2
18)

1 The spatial correlation tensor Bij (~r = ∆ x1, ∆ x2, ∆ x3) is
related to the spectral tensor Φij (~k = k1, k2, k3) via the 3D
Fourier transform as:
Bij (~r) =

∫∞
−∞

∫∞
−∞

∫∞
−∞ Φij (~k) exp ( i ~k .~r) d~k

and its Inverese transform
Φij (~k) =

∫∞
−∞

∫∞
−∞

∫∞
−∞ Bij (~r) exp (−i ~k .~r) d~r

2 Therefore, spectral interpretation of the Reynolds stress (
one-point correlation ) tensor −ρ u′

i u′
j is

−ρ u′
i u′

j = −ρ Bij (~r = 0) = −ρ
∫∞
−∞

∫∞
−∞

∫∞
−∞Φij (~k) d~k

3 Now, since u′
i u′

j determine the energy in the various

velocity components , the value of Φij (~k) gives the division
of this energy in different eddy sizes or wave numbers1 .
Consequently, Φij (~k) is called the energy spectrum tensor.

1Small values of wave numbers correspond to large eddies or
wavelengths and vice versa.
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Main Postulate - 2 - L23( 3
18)

1 Further, the sum of the diagonal components of the tensor
gives the turbulent kinetic energy at a given wavenumber.
Bii (~r = 0) = u′

i u′
i = 2 e =

∫∞
−∞

∫∞
−∞

∫∞
−∞Φii (~k) d~k

2 The spectral tensor Φii (~k) is a function of 3 wavenumber
components. In order that physical interpretation becomes
easier, it is customary to remove directional dependence by
integrating Φii (~k) over a spherical shell of radius k ( scalar )

where k = +
√

k2
1 + k2

2 + k2
3 .

3 If dA is the area of an element on the surface of the
spherical shell of radius k then

e(k) =
1
2

∫ ∫
Φii (~k) dA → e =

∫ ∞

0
e(k) dk

4 The function e(k) is called the scalar kinetic energy
spectrum.
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TKE Eqn in k-Space - 1 - L23( 4
18)

To derive the transport eqn for e(k), an equation for Bij is first
derived for a non-homogeneous, anisotropic and steady
turbulent flow.Thus, the instantaneous ( û = u + u

′
) form of the

NS equations ( with ∂u
′

k/∂xk = ∂uk/∂xk = 0 ) is

∂u
′

i

∂t
+ ûk

∂ûi

∂xk
= − 1

ρ

∂p̂
∂xi

+ ν
∂2ûi

∂xl ∂xl

∂u
′

i

∂t
+ (uk + u

′

k)
∂ui

∂xk
+ u

′

k
∂u

′

i

∂xk
+

∂u
′

k u
′

i

∂xk

= − 1
ρ

∂(p + p
′
)

∂xi
+ ν

∂2(ui + u
′

i )

∂xl ∂xl

We now subtract the RANS momentum eqn form this eqn ( next
slide )
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TKE Eqn in k-Space - 2 - L23( 5
18)

Subtraction results in eqn for position ~r1

∂u
′

i

∂t
+ u

′

k
∂ui

∂xk
+ uk

∂u
′

i

∂xk
+

∂

∂xk
(u

′

k u
′

i − u′
k u′

i ) = −1
ρ

∂p
′

∂xi
+ ν

∂2u
′

i

∂xl ∂xl

and a similar equation for u
′

j at position ~r2

∂u
′

j

∂t
+ u

′

k
∂uj

∂xk
+ uk

∂u
′

j

∂xk
+

∂

∂xk
(u

′

k u
′

j − u′
k u′

j ) = −1
ρ

∂p
′

∂xj
+ ν

∂2 u
′

j

∂xl ∂xl

Now, multiplying first equation by u
′

j at ~r2 and second equation
by u

′

i at ~r1 and, adding and time-averaging, yields the required
equation for Bij ( next slide ) in terms of two ( in fact, six )
independent variables namely: ξk = xk |r2

− xk |r1
(separation)

and xk |m = 1
2 (xk |r1

+ xk |r2
) (mid-point)
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TKE Eqn in k-Space - 3 - L23( 6
18)

∂Bij

∂t
+

[
Bkj (

∂ui

∂xk
)r1 + Bik (

∂uj

∂xk
)r2

]
+

1
2

(uk ,r1 + uk ,r2)
∂Bij

∂xk

∣∣∣∣
m

+ (uk ,r2 − uk ,r1)
∂Bij

∂ξk

= −1
2

∂

∂xk
(Ti,kj + Tik ,j)|m −

∂

∂ξk
(Ti,kj − Tik ,j)

− 1
2 ρ

[
∂Cp,j

∂xi

∣∣∣∣
m

+
∂Cp,i

∂xj

∣∣∣∣
m

]
+

1
ρ

[
∂Cp,j

∂ξi
− ∂Cp,i

∂ξj

]
ν

[
1
2

∂2Bij

∂xl ∂xl

∣∣∣∣
m

+ 2
∂2Bij

∂ξl ∂ξl

]
Ti,kj ≡ (u′

i )r1 (u′
j )r2 (u′

k)r2 Tik ,j ≡ (u′
i )r1 (u′

k)r1 (u′
j )r2

Cp,j ≡ (p′)r1 (u′
j )r2 Cp,i ≡ (p′)r2 (u′

i )r1 Bij = (u′
i )r1 (u′

j )r2
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TKE Eqn in k-Space - 4 - L23( 7
18)

1 The eqn of the previous slide represents complete eqn for
non-homogeneous non-isotropic turbulent flow. The eqn is
not tractable.

2 For homogeneous turbulence , however, all derivatives of
the correlations with xk vanish but are finite w.r.t. ξk .

∂Bij

∂t
= ξl

∂uk

∂xl

∣∣∣∣
m

∂Bij

∂ξk
(mean convection)

−
[
Bkj (

∂ui

∂xk
)r1 + Bik (

∂uj

∂xk
)r2

]
(production)

− ∂

∂ξk
(Ti,kj − Tik ,j) (v-diffu)

− 1
ρ

[
∂Cp,i

∂ξj
− ∂Cp,j

∂ξi

]
(p-diffu) + 2ν

∂2Bij

∂ξl ∂ξl
(diss)
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TKE Eqn in k-Space - 5 - L23( 8
18)

1 The mean convection term is really (uk ,r2 − uk ,r1) ∂Bij/∂ξk .
However, (uk ,r2 − uk ,r1) = ξl ∂uk/∂xl |m. The v-diffu and
p-diffu terms represent diffusion of energy due to velocity
and pressure fluctuations respectively.

2 In order to study the transfer process , each term is Fourier
transformed so as to yield an equation for Φij(~k).

3 Then, setting i = j, the equation for Φii(~k) results.
4 Further, to achieve directional independence, each term is

integrated over a spherical shell of radius k to yield

∂e(k)

∂t
= P(k)− ∂Tt(k)

∂k
− D(k)

where, P(k) is production, D(k) is dissipation and
Tt(k) = Tconv(k) + Tv−diffu(k) + Tp−diffu(k)
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TKE Eqn in k-Space - 6 - L23( 9
18)

1 This is spectral form of the TKE eqn for homogeneous
turbulence . It can be regarded as a 1D eqn representing
energy balance over CV ( dk ) in the wavenumber space.

2 The P(k) term comprises of spectral functions ( arising out
of Bkj and Bik ) and mean velocity gradients, is not expected
to be large at high wave numbers ( small scale motions )
but significant at small wave numbers.

3 The gradient transport of Tt (k) vanishes when integrated
from k = 0 to k = ∞ giving

∂e
∂t

=
∂

∂t

∫ ∞

0
e(k) dk =

∫ ∞

0
(P(k)− D(k)) dk

This transfer term simply redistributes energy both
directionally and among the different wave numbers.

4 Dissipation D(k) = 2 ν k2 e(k). The presence of k2 confirms
that it is significant only at high wave numbers.
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Typical Solution - L23( 10
18)

We consider pure homogeneous shear flow with v = w = 0 and
∂u/∂y = const at Relg ' 100.
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Discussion -1 - L23( 11
18)

1 D ( k ) term dominates at high k ( Kolmogorov small eddies,
say (0.1/lε) < k < (1/lε) ). Energy is mainly supplied by
transfer term ∂Tt(k)/∂k and energy extraction from mean
motion is minimal P(k) ' 0.

2 ∂Tt(k)/∂k is negative at small k and positive at higher k
indicating that the energy is indeed transferred out of low-k
region and into high-k region.

∫∞
0 (∂Tt(k)/∂k)dk = 0

3 The dominance of P(k) in low-k region indicates that most
of the production is brought about by large eddies.

4 As k → 0, very large eddies dominate and the e(k)
spectrum is not expected to be universal being influenced
by mean velocity gradients. Also ∂e(k)/∂t is small and
∂Tt(k)/∂k = P(k). This is region of rapid distortion .

5 The e(k) is maximum near ke which characterises the most
energetic eddies . lint is largely determined by these eddies.
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Discussion - 2 - L23( 12
18)

1 If kdiss >> ke, then an inertial equilibrium range (
k < (0.1/lε) ) identified with Taylor micro-scale exists in
which the conditions for isotropy of the small scale eddies
and of independence of the turbulence structure from
energy containing eddies are simultaneously satisfied. For
this region e(k) ∝ k−

5
3 .

2 The existence, or otherwise, of the inertial range has
considerable significance for the near-wall turbulence .

3 Finally, at very high wave numbers, where k > (1/lε), the
energy spectrum varies as e(k) ∝ k−7. At this point, D(k) is
maximum.
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Vorticity Dynamics-1 - L23( 13
18)

Spectral analysis shows how energy is transferred from large
eddies to small eddies. The process of breakdown of eddies,
can be understood from vorticity dynamics of the fluctuations.
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Vorticity Dynamics-2 - L23( 14
18)

1 Fig ( a ) shows 3D cubic fluid elementwhich is stretched in
the direction of the linear strain s11.

2 Then, the cross-section in a plane perpendicular to the
strain will become smaller as shown in Fig ( b )

3 Similarly, in Fig ( c ) a vortex element is considered. The
vortex in the direction of strain s11 becomes smaller in
cross-section while the cross-section normal to the strain
becomes larger as shown in Fig ( d )

4 Intuitively, this is understandable. But, it is useful to
consider Eqn for vorticity of fluctuations . ( next slide )
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Vorticity Dynamics-3 - L23( 15
18)

1 Consider large eddy structure where effects of viscosity are
small. Then vorticity eqn is ∂ω

′

i /∂t = ω
′

i sij
2 Now, for simplicity, consider a 2D strain field with

s11 = − s22 = s ( a constant ) for all times t > 0 and,
s12 = 0. Then, if ω

′

0 is the vorticity at t = 0,

∂ω
′

1

∂t
= ω

′

1s → ω
′

1

ω
′
0

= exp (st),
∂ω

′

2

∂t
= −ω

′

2s → ω
′

2

ω
′
0

= exp (−st)

Hence, (ω
′

1)
2 + (ω

′

2)
2 = (ω

′

0)
2 (exp (2 st) + exp (−2 st))

3 The total vorticity thus increases with s × t . At large values
of s × t , ω

′

1 in the direction of stretching increases rapidly
and ω

′

2 in the direction of compression decreases slowly.
Eddies are thus stretched at a rapid rate into smaller
eddies. Their growth to larger sizes occurs at a much
slower rate resulting in net reduction in their size.
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Vorticity Dynamics-4 - L23( 16
18)

1 When effect of µ is small,
angular momentum is
conserved . (ω

′
)2 r = const.

2 In Fig ( b ), element is
stretched in x dirn. Then,
KE of rotation in the y-z
plane increases at the
expense of the KE of
velocity component u

′

which does the stretching.
3 Length scales of motion in

y-z plane decrease and
hence, v

′
and w

′
increase.

v
′
and w

′
bring about further

stretching in y and z directions
and, so on. At each stretching,
however, the length scale of the
element decreases. This is
called the breaking down of the
eddies.
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Summary -1 - L23( 17
18)

The tree demonstrates that stretching in x direction (say)
intensifies motions in y and z directions; producing smaller scale
stretching in these directions and intensifying motions in x, y
and, z directions at the end of the second stage and, so on to
further stages. As the length scales are progressively reduced,
the effects of mean motion are weakened and the small eddies
tend towards a universal structure that is homogeneous and
isotropic despite the fact that the mean flow and the large scale
structure are anisotropic and inhomogeneous.
The breaking down of the eddies would continue indefinitely if it
were not for the action of viscosity which kills all fluctuations and
maintains the fluid continuum2 .

2P. Bardshaw, An Introduction to Turbulence and Its Measurement,
Pergamon Press, Oxford, ( 1971 )
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Summary -2 - L23( 18
18)

Big whirls have little whirls,
which feed on their velocity;
And little whirls have lesser whirls
And so on to viscosity .

Richardson (1922)
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