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LECTURE-30 PREDICTION OF
TURBULENT HEAT TRANSFER

@ Prediction of St, (Ext Bls)

© Use of law of the Wall

@ Analogy Method

© Integral Method

@ Effects of V,, and Roughness

@ Prediction of Nu ( Internal Flows )

© Use of Law of the wall
@ Analogy Method
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Use of Wall Law - Ext BLs - 1 L30(-})

@ From lecture 28, the temperature law of the wall is written as
TL = Prr (UL + PF.) where
U U 2

U = 2= ==
> U \/1u/p Cix
o —(Ta=Tw) _pClUs  u _/Ciu/2
> qw/(p Cp Ur) hx U Sty
St, = v Cr/2 (Prr ~ 0.9)
Prr(\/2/Csx + PF)

@ For Pr=1, PF = 0. Reynolds used Prr = 1. Hence,
Sty = Crx/2 ( Perfect Reynolds Analogy ) . For near-unity
Pr, St, ~ (Crx/2) x Pr=%4. Hence, for
zero Pr Gr, — St, = 0.0286 Re; %2 Pr—04,

@ For rough surface , appropriate Cr, and PF., to be used
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Analogy Method - 1 - Ext BLs - L30(:2)

@ Recallthat Proy = dT+/du™ = (dT*/dy*)/(du*/dy™).
Hence, using (11ot/7w) ~ 1 = (1 4+ v¢/v) (du™/dy™) gives

dT+ (1 +v/v)(dut/dy™) 1 1 17!

dyt = PP P Gy D P

@ Integrating from y = 0 to oo, and using the 3-layer law for
u™, and hence for (du*t/dy™) it follows that
T, -0 = Pryf=Prul,=5Pr

sl —

To-Ti = 5Prin(14550) (v;=30 used)
T

1+ (Pr/Prr)(67/25—1)

+ +
T T, 25 Prrin 1511 (Pr/Prr)

o0
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Analogy Method - 2 - Ext BLs - L30(-%)

Adding the last 3 Egns, it can be shown that

\/Cf,x/2 . Pr
S—tx = 5Pr+5PrT|n(1+5P—rT
1+ (Pr/Prr) (6+/2.5—1)}

1411 (Pr/Prr)

+ 25Prrin {

where using the Power law,

Uo-z )7 _ ( 2/Cf,X )7
8.75 8.75

The Cs is evaluated using Integral method of lecture 29.

|

0=
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Use of Int Energy Eqn - 1 - L30(+)
@ When U, and (T, — T..) vary arbitrarily with x

1
Us (Tw T)d

[A2 Use (Tw — Tso)] = St

@ For further analysis, let' St, = C Re; "
© Then for const U, and (T, — T.,) BL, that is flat plate

—

ddiz = St,=C UOVOX)‘” integration gives

Ny = 1?,7(UV )" x'=" using A, =0 at x =0
1—n UOOAQL1

St = Cl—g— x =)

"Ambroke GS  Sov. Phy. Tech. Phy.,vol2, p 1979, 1957
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Use of Int Energy Eqn - 2 - L30(->)

@ We assume validity of the last relationship regardless of the
previous history of the Bl . Then, IEE becomes
1—-n y Uoo AZ)TL
C v

d
o 182 Use (T = Too)] = Uso(Tu—Too) C(

or, integration gives

1—n

cv X
T, — T.,)"/0-m
(A=) Us (Tw— To) U Yoo { J

@ Using St, ~ A relation from previous slide

Ap =

C v (Ty — To)W(-N)

Ste = — ;
2 Use (T — Too) V0= 0]
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Use of Int Energy Eqn - 3 - L30(:%)

Assuming flat plate data C = 0.0284 Pr—%4 and n = 0.2,
expression of previous slide becomes

0.0284 Pr04,02 (T,, — T,.)02
L2 Use (Tw — Too)125 dx] ™

165( v dUoo)
St, “U2, dx

Stx =

2

~ 0.0295 Pr=°* Re,*? |1 —

These expressions give remarkably good fit to Exptl data
for pr gr parameter (v/U2) (dU,,/dx) < 108 ( Crawford and
Kays )
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Effect of v,, - 1 - L30(%)

@ For Flat Plate and (T, — T..) = const, Crawford and Kays
show that for finite v,

Stew,  In(1+Bp) /U

St B 77 s,

or St,,, = 0.0284 Pro4Re,02 ['”(18_“317)}
h

@ For arbitrary variation of v,, |IEE reads as

dA %
dX2 Stxva _'_ U_:/o - StX,VW (1 + Bh) or
= 10.0284 Pr=°%In (1 + By) “E—Bh)} Re, %2
h
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Effect of v,, - 2 - L30(Z)

@ For B, = const , and using A, = 0 at x = 0, integration give

0.25
(1+ Bh)} Re; 0%
B, 2

Re;°2 = 1.057 [0.0284 Pr—%%In (1 + By)

@ Using St ,, ~ Re relation from previous slide

In (1 +B,,)]1-25

Sl‘x,vW —0.0125 Pr 0% Re;(z).ZS (1 + Bh)0.25 { -
h

We assume validity of this relation even when B, U,, and
(Tw — Ty) vary arbitrarily with x ( see next slide )

April 23,2012 10/19



Effect of B, Uy, and (T, — T..) - L30(2)

For this case, |IEE will read as

% [A2 Use (Tw — To)] = 0.0125 Pr=°° Re,)?° U, (T — Two)

{(1 JEF;Bh)

h

In(1 + B,,)] .

Integration gives

St, = 0.0284 pr—04

y 02 (T — Too)°25 (1 + BK)®2 {In (1 + By)/Bp} "

[fox Uso (T — To)'25 {(1 + Bp)In (1 + By)/By}'2° dx o

Crawford and Kays show remarkable good fit to experimental
data and predictions using mixing length.
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Similarity Method for TBL - L30(3>
@ The governing Eqn for a Temperature TBL is

8T Ly oT 4 0 b oT
“Yox TV oy ay |77 oy
where bp, = a/u +ay/v = Pr=' + Pr;' v, where
Prr = v¢/ay, v = /v and vy is given by Prandtl’s mixing
length.
@ Using similarity variables defined in lecture 29,
d ! / 2n / 2X / de / df
d—n(bpr9)+f9 +(m—+1)f (1-0) = T (f a—e a)
_ox dU. X d(Tw—Tx) , Tu—-T
(U_OO)Wyn_(TW_Too) dX ’Q_TW_TOO

Iterative solution is required at each x.
BCs: 6(0) = 0 and () = 1.
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Wall law - Pipe Flow - 1 - L30(33

@ Writing wall-law for Pipe centerline
T, = Prr (u} + PF) = Prr (ut +1.5/k + PF.) where

cl —

7-w - Tb TW - 7-cl

+

T X (P <G,
- k UD u, TW_TCI
- (hD)X(a)X(f)X(Tw—Tb)

B RePrx\ﬁx(TW—TC,)
N 27 T, —Tp

© Hence, Equating for T}

cl?

B Re Pr \/f/2 Tw—To
C Prr(\/2/f+15/k+PFy) Tw—Ts

Nu
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Wall law - Pipe Flow - 2 - L30(12

@ To evaluate temperature ratio, we use Power laws

T—Tu

_ Yy _ U
(TCI_TW)_(_)/ -

R u cl

Then, using definition of T, it can be shown that

oL Yoo _ 39 400
(7,=7,) 5= a9 7 -39

© The most widely used correlation due to Gnienlenski is
(Re —1000) Pr \/f/2
Nu =
V2/f+12.7 (Pr2/3 —1)
valid for 0.5 < Pr < 2000 and 2300 < Re < 5 x 10°




Analogy Method - Pipe Flow - 1 - L30(12

@ Inthe FD Pipe flow , dp/dx = const. Hence, the axial
momentum eqgn and its consequences are

1d(f7'tot) - dp Ttot_L:.I_Z
roar T dx 7w R R
au au
But 7ot = p(V‘i‘Vt)E:—P(V‘FVt)—y

ve,  1—-y"/R"

(1+ y) ~ dut/dy+

@ Then form Slide 2,
dT+ i y+) +(1 —yt/Rt 11!
dyt R+’ | Pr

dut/dyt )PrT
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Analogy Method - Pipe Flow - 2 - L30(13

@ Integrating fromy = 0 to R*, and using the 3-layer law for
u™, and hence for (du™/dy*) it can be shown that

Th—0 = 5Pr (yi=5)
Pr

T,—- T4 = 5PrTIn(1+5W (vi; = 30)
T

+
TG —T), = 2.5PrTIn(g—0) for Pr > 12

trl

RePr [f T,— Ty
+_— o w C
To =Ny \/;(TW—T,,)

Therefore, adding the three equations ( see next slide )

where

2For Pr << 1, closed form soln cannot be obtained
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Analogy Method - Pipe Flow - 3 - L30(12
@ With R* = (Re/2) \/f/2, addition gives

Ny — Re Pr\/f/2 (Tw — To))/(Tw — Tb)
5Pr+5Prrin(1+5£-) +25Prrin {(%) g}

@ Dittus Boelter Correlation - Nu = 0.023 Re®® Pr", n = 0.4 for
heating and n = 0.3 for cooling.
© Sliecher and Rouse Correlation

Nu = 5+0.015Re?PrP (0.1 < Pr < 10%),(10* < Re < 108)

0.24
a = 0.88— ;5 b=0333+05exp (~0.6Pr)

For Liquid Metals, Nu = a + b Re®8 Pr0-93 where
(a=6.3and b =0.0167 for g, = const ) and
(a=4.8and b =0.0156 for T, = const)
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Comparison of Correlations - L30(

Re \ 3000 \ 10000 \ 50000 \ 10° \ 106
Pr=0.5 Temprat=1.1, Prr = 0.943
Gin | 8.13 | 252 | 845 147 | 883
DB | 10.5 | 27.6 100 174 | 1100
SR | 119 | 23.7 75.6 130 | 845
Anal | 10.3 | 244 |81.0 139 | 880
Pr=5.0, Temprat=1.1, Prr = 0.887
Gin [ 19.2 | 70.1 287 524 | 3750
DB | 26.5 | 69.4 | 251 438 | 2760
SR | 29.7 | 74.1 278 498 | 3520
Anal | 28.1 | 76.5 | 293 531 | 3860
Pr=25.0, Temprat=1.1, Prr = 0.882
Gin | 33.2 | 126 545 1020 | 7780
DB | 50.4 | 132 479 834 | 5260
SR | 521 | 139 552 1010 | 7540
Anal | 40.3 | 114 455 842 | 6500
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Summary - L30(}

@ The correlations for Pipe flow can be applied to non-circular
ducts by evaluating f, Re and Nu based on hydraulic
diameter

© The easy-to-use Dittus-Boelter correlation overpredicts Nu
for Pr < 1 and underpredicts Nu for Pr > 1

© For complete description of flow and heat transfer involving
complex ducts, strong and changing strain rates due to
body forces etc, it is best to adopt CFD techniques with
two-eqn or stress-flux egn models.

© This completes discussion of Turbulent flow and Heat
Transfer. In the remaining lectures, we shall discuss
Convective Mass Transfer
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