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Problem Definition L41( 1
18)

Consider a vertical plate at
Tw = const such that Tw > T∞.
Then, fluid close to the wall
heats up and, compared to the
density of the stagnant
surrounding, its density
decreases. This density
difference sets up an upward
fluid motion due to buoyancy .
If Tw < T∞, then a downward
motion will be set up .
The boundary layers thus
developed are laminar to begin
with ( small x ) but, turn
turbulent at large x.
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Governing Eqns - 1 L41( 2
18)

For constant properties, the governing eqns are
∂u
∂x

+
∂v
∂y

= 0

ρ

[
u
∂u
∂x

+ v
∂u
∂y

]
= − dp∞

dx
+ µ

∂2u
∂y2 − ρ g

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

where from hydrostatics, dp∞/dx = − ρ∞ g . Now, using
definition of volumetric coefficient of thermal expansion β,
the vertical momentum eqn transforms to

β = − 1
ρ

(
ρ− ρ∞
T − T∞

)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 + g β (T − T∞)
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Governing Eqns - 2 L41( 3
18)

Thus, the modified momentum eqn and the energy eqn
must be solved simultaneously along with the continuity eqn.
Solutions can be obtained by similarity, integral or
finite-difference methods. The Integral forms of Eqns
can be derived as

d
dx

(

∫ δ

0
u2 dy) = − τw

ρ
+ g β

∫ δ

0
(T − T∞) dy

d
dx

{∫ δ

0
u (T − T∞) dy

}
=

qw

ρ cp

The BCs are: at y = 0, u = 0 and T = Tw . At y = δ,
u = 0 and T = T∞ .
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Similarity Soln - L41( 4
18)

Define u ≡ ∂Ψ

∂y
, v ≡ − ∂Ψ

∂x
, θ =

T − T∞
Tw − T∞

Then,

∂Ψ

∂y
∂2Ψ

∂y ∂x
− ∂Ψ

∂x
∂2Ψ

∂y2 = ν
∂3Ψ

∂y3 + g β (Tw − T∞) θ ( Mom )

∂Ψ

∂y
∂θ

∂x
− ∂Ψ

∂x
∂θ

∂y
= α

∂2θ

∂y2 − θ
∂Ψ

∂y
dTw

dx
( Energy )

Now, define similarity variables η = y × S(x) and
Ψ (x , η) = ν × f (η)×G (x) . Hence,

f
′′′

+

[
g β (Tw − T∞)

(G S3) ν2

]
θ + (

G′

S
) (f f

′′ − f
′2

)− (
G
S2 ) S

′
f
′2

= 0

θ
′′

+ Pr
[

(
G′

S
) f θ

′ − (
G/S

Tw − T∞
dTw

dx
) f

′
θ

]
= 0
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Similarity Soln - Tw = const - L41( 5
18)

1 For dTw/dx = 0, let

(
G′

S
) = C1,

g β (Tw − T∞)

(G S3 ν2)
= C2 and

G S′

S2 = C3

2 Combining expressions for C1 and C2 gives
G ( x ) ∝ x3/4 and S ( x ) ∝ x−1/4

3 If we take C3 = -1 then, C1 = 3 and C2 = 1. Hence,
G = 4× (Grx/4)1/4 and S = (Grx/4)1/4/x , where

Grx =
g β (Tw − T∞) x3

ν2 = (Grashof Number) and

f
′′′

+ θ + 3 f f
′′ − 2 f

′2
= 0 BCs f (0) = f

′
(0) = f (∞) = 0

θ
′′

+ 3 Pr f θ
′

= 0 BCs θ(0) = 1, θ(∞) = 0

η =
y
x

(
Grx

4
)1/4 f

′
=

u x/ν
2
√

Grx
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Soln ( Contd ) - 1 - L41( 6
18)

Unlike in Forced convection, the equations are best solved by
FD method using Tri-Diagonal Matrix Algorithm.

fi − fi−1

∆η
= f

′

i

(AE + AW ) f
′

i = AE f
′

i+1 + AW f
′

i−1 + θi where

AE = (
1

∆η2 + 1.5
fi

∆η
) and AW = (

1
∆η2 − 1.5

fi
∆η

)

(AE + AW ) θi = AE θi+1 + AW θi−1 where

AE = (
1

∆η2 + 1.5 Pr
fi

∆η
) and AW = (

1
∆η2 − 1.5 Pr

fi
∆η

)

θ
′

(0) = 2× (
θ (2)− θ (1)

∆η
) and f

′′
(0) = 2× (

f ′
(2)− f ′

(1)

∆η
)

Soln: Nux =
qw

Tw − T∞
(
x
k

) = − θ′
(0)× (Grx/4)1/4
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Soln ( Contd ) - 2 - L41( 7
18)

Pr 0.01 0.1 1.0 10 100 1000
ηmax 22 12 7.5 3 2 1

Nux
Gr0.25

x
0.059 0.164 0.402 0.821 1.54 2.72

f ′′
(0) 0.9855 0.859 0.6419 0.4145 0.248 0.137
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Soln for Tw − T∞ = A xn - L41( 8
18)

Governing eqns for Tw − T∞ = A xn are

f
′′′

+ (n + 3) f f
′′ − (2n + 2) f

′2
+ θ = 0

θ
′′

+ Pr
{

(n + 3) f θ
′ − 4 n f

′
θ
}

= 0

Solns for n = 0.2 and n = 1.0

n Pr 0.01 0.1 1.0 10 100 1000
0.2 Nux

Gr0.25
x

0.068 0.189 0.457 0.924 1.705 3.03
f ′′

(0) 0.934 0.813 0.607 0.391 0.230 0.13
1.0 Nux

Gr0.25
x

0.093 0.354 0.597 1.184 2.178 3.87
f ′′

(0) 0.807 0.702 0.523 0.336 0.197 0.11
For n = 0.2,
qw = −k (Tw − T∞) θ

′
(0) S ∝ (Tw − T∞)1.25 × x−0.25 = const .

The Nux values are greater than those for Tw = const.
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Soln for Tw − T∞ = A xn & vw - L41( 9
18)

For finite vw , boundary condition is changed

v = − ∂Ψ

∂x
= − ν (f G

′
+ G f

′
y S

′
) hence

f (0) = − (vw x/ν)

(Grx/4)0.25 × (
1

n + 3
) =
− v∗w
n + 3

= const

Solns for n = 0 ( Tw = const ) and Pr = 0.7

Suction Blowing
v∗w -3 -2 -1 +1 +2 +3
Nux Gr−1/4

x 1.513 1.06 0.664 0.147 0.0504 0.0055
f ′′

(0) 0.446 0.574 0.678 0.576 0.434 0.326

For v∗w = 0, Nux Gr−1/4
x = 0.353.
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Curve-fit Correlations - L41(10
18)

1 For Tw = const and vw = 0

Nux =
3
4

[
2 Pr

5 (1 + 2 (
√

Pr + Pr)

]0.25

(Grx Pr)0.25 (Ede)

Nux = (
Grx

4
)0.25

[
0.676

√
Pr

(0.876 + Pr)0.25

]
(Ostrach)

2 For (Tw − T∞) = A x0.2 ( qw = const ) and vw = 0

Nux =

[
Pr

4 + 9
√

pr + 10 Pr

]0.2

(Gr ∗x Pr)0.2 (Fujii & Fujii)

Gr ∗x = Grx Nux =
g β qw x4

k ν2
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Integral Solns Tw = const, vw = 0 - L41(11
18)

Here integral eqns of slide 3 are evaluated by assuming

u
Uref

=
y
δ

(1− y
δ

)2, and
T − T∞
Tw − T∞

= (1− y
δ

)2

1
105

d U2
ref δ

dx
=

g β
3

(Tw − T∞) δ − ν Uref

δ
(Mom)

1
30

d Uref δ

dx
=

2 α
δ

(Energy)

Soln obtained assuming Uref = C1 xm and δ = C2 xn to give
m = 0.5 and n = 0.25. The result

δ

x
= 3.93 (

0.952 + Pr
Pr 2 )0.25 Gr−0.25

x → δ ∝ x0.25

Nux = 0.508 (
0.952 + Pr

Pr 2 )−0.25 Gr 0.25
x → hx ∝ x−0.25
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Transition to Turbulence - L41(12
18)

1 If we write the differential mom eqn for y = 0 and y ≥ δ then,

Uref
dUref

dx
=

(ρ∞ − ρw ) g
ρ

= g β (Tw − T∞)

Hence, Uref =
√

g β (Tw − T∞) x and
Rex = Uref x/ν = Gr 1/2

x

2 Generally, transition occurs at 109 ≤ Grx ,tr ≤ 1010. For
gases and organic liquids, Grx ,tr → 109.
For Pr > 100, Grx ,tr → 1010.

3 In practical work, Rayleigh number Ratr = Grx Pr = 109 is
taken as transition criterion.
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Turbulent BL - L41(13
18)

Integral eqns are solved with

u
Uref

= (
y
δ

)1/7 (1− y
δ

)4, and
T − T∞
Tw − T∞

= 1− (
y
δ

)1/7

τw = 0.0225 ρ U2
ref (

Uref δ

ν
)−0.25

Stx =
qw/(Tw − T∞)

ρ cp Uref
= 0.0225 (

Uref δ

ν
)−0.25 Pr−2/3

Soln obtained assuming Uref = C1 xm and δ = C2 xn to give
m = 0.5 and n = 0.7. The result

Nux = 0.0295 Pr 7/15 (
Grx

1 + 0.494 Pr 2/3 )0.4 → hx ∝ x+0.2

This is unlike Laminar boundary layer.

() April 29, 2011 15 / 1



Overall Correlation - L41(14
18)

For the entire range of Rayleigh Numbers and for Tw = const
and vw = 0, the currently accepted correlation1 is

NuL = 0.68 +
0.67 Ra0.25

L

[1 + (0.492/Pr)9/16]
4/9 10−1 < RaL < 109

NuL =

{
0.825 +

0.387 Ra1/6
L

[1 + (0.492/Pr)9/16]
8/27

}2

109 < RaL < 1012

where hL = 1
L

∫ L
0 hx dx and NuL = hL L/k .

Correlations for natural convection from other geometries such
as inclined/horizontal plates, cylinders, cavities etc ( see,
Incropera F P and Dewitt D P, Fundamentals of Heat and Mass
Transfer, 4th Edition, John Wiley and Sons, New York, 1996 )

1Churchill and Chu, IJHMT, vol 18, p 1323, ( 1975 )
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Simultaneous HMT - L41(15
18)

We consider inert mass transfer with heat transfer at small
mass transfer rates and assume constant properties. Then for
∆T = Tw − T∞ = A xn and ∆ωv = ωv ,w − ωv∞ = A xn,
it can be shown that

f
′′′

+ (n + 3) f f
′′ − (2n + 2) f

′2
+ θ + Fβ Φ = 0

θ
′′

+ Pr
{

(n + 3) f θ
′ − 4 n f

′
θ
}

= 0

Φ
′′

+ Sc
{

(n + 3) f Φ
′ − 4 n f

′
Φ
}

= 0

and, as before η =
y
x

(
Grx ,∆T

4
)1/4

where Φ = (ωv − ωv ,∞)/∆ωv and Fβ = (β∗ ∆ωv )/(β ∆T ) .
The BCs are f (0) = f ′

(0) = 0, θ (0) = Φ (0) = 1 and
f ′

(∞) = θ (∞) = Φ (∞) = 0. Notice from slide 9 that as
vw → 0, f(0) = 0.
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Solutions for ( n = 0, Pr = 0.7, Fβ = 1 )
- L41(16

18)
Fβ = 1 implies aiding buoyancies.

Nux =
hx x

k
= − θ′

(0) (
Grx ,∆T

4
)1/4

Shx =
g∗ x
ρ D

== − Φ
′

(0) (
Grx ,∆T

4
)1/4

Sc −θ′
(0) −Φ

′
(0) f ′′

(0) δω
δT

Le = Pr / Sc
0.5 0.431 0.362 1.17 1.01 1.4
0.7 0.421 0.421 1.14 1.00 1.0
1.0 0.410 0.490 1.111 0.97 0.7
5.0 0.379 0.917 0.985 0.329 0.14
10.0 0.371 1.176 0.937 0.233 0.07
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Solutions for ( n = 0, Pr = 0.7, Fβ = -0.5 )
- L41(17

18)

Fβ = -0.5 implies opposing buoyancies

Sc −θ′
(0) −Φ

′
(0) f ′′

(0) δω
δT

Le = Pr / Sc
0.5 0.278 0.231 0.383 1.004 1.4
0.7 0.297 0.297 0.404 1.00 1.0
1.0 0.309 0.367 0.425 0.984 0.7
5.0 0.337 0.776 0.507 0.350 0.14
10.0 0.342 1.027 0.536 0.256 0.07

Compared to Fβ = 1, f ′′
(0), Nu and Sh have now reduced .

For other problems, see ( Y. Jaluria Natural Convection Heat
and Mass Transfer, Pergamon Press, NY, 1980 )
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Large Mass Transfer Rates - L41(18
18)

At large mass tranfer rates, it can be shown that

f (0) =
− vw

ν G′ =
−Φ

′
(0)

Sc (n + 3)
× Bm =

−θ′
(0)

Pr (n + 3)
× Bh

Solutions for n = 0, Pr = Sc = 0.7 and Fβ = 1.

Bm Shx (Grx ,∆T/4)−0.25 f ′′
(0) Sh/Sh∗ ln(1+Bm)

Bm

0.0 0.421 1.142 1.0 1.0
0.1 0.400 1.135 0.951 0.953
0.2 0.381 1.128 0.907 0.912
0.3 0.364 1.121 0.866 0.875
0.4 0.350 1.114 0.833 0.841
0.5 0.336 1.107 0.800 0.811

The data show that Sh/Sh∗ ' ln ( 1 + B ) / B. So,
for const properties, Reynolds flow model is verified.
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