Prof. Millind D. Atrey

Department of Mechanical Engineering, **IIT Bombay**

Lecture No. 13

Earlier Lecture

- In the earlier lecture, we have seen that the precooling of a Simple Linde – Hampson system
improved the liquid vield improved the liquid yield.
- In a Precooled Linde Hampson system, a closed cycle refrigerator is thermally coupled to a simple Linde – Hampson system through a 3 – fluid heat exchanger.
- The precooling limit of the precooling cycle is governed by the boiling point of the refrigerant atits suction pressure.

- From the tutorial in the last lecture, we saw that the yield of a Precooled cycle was more than that
of the Simnle System of the Simple System.**Earlier Lecture**

torial in the last lecture, we saw tha

a Precooled cycle was more than tha

e System.

Im liquid yield in the Precooled

Irs, when the effectiveness of the 3
- The maximum liquid yield in the Precooled system occurs, when the effectiveness of the 3 –fluid heat exchanger is 100%.

• In the above equation, the values of h_6 and h_3
are avaluated at hailing naint of the refrigance are evaluated at boiling point of the refrigerant.

Outline of the Lecture

Topic : Gas Liquefaction and Refrigeration Systems (contd)

- Precooled Linde Hampson system
Cffect of Flow ratio r
	- Effect of Flow ratio **r**
	- Yield v/s mass ratio **r**
	- Work requirement v/s mass ratio **r**
	- FOM v/s mass ratio **r**

Introduction

• The work requirement for a Precooled Linde –
Hamnson System is given by Hampson System is given by

$$
-\frac{W_c}{\dot{m}} = \left[T_1 (s_1 - s_2) - (h_1 - h_2) \right] + r (h_{b,r} - h_{a,r})
$$

- The first term is the work requirement in a Simple Linde – Hampson system.
- The second term is the additional work required to precool the system.

Introduction

• The yield for a Precooled Linde – Hampson
system is as given helow system is as given below.

$$
y = \frac{\dot{m}_f}{\dot{m}} = \frac{h_1 - h_2}{h_1 - h_f} + r \left(\frac{h_{a,r} - h_{d,r}}{h_1 - h_f}\right)
$$

•Where, the mass ratio is given by

- The first term in the above expression is the yieldfor a simple Linde – Hampson system.
- The second term is the additional yield occurring due to the precooling of the Simple system.

Introduction

•• The increment in the yield is related to the

$$
y = \frac{\dot{m}_f}{\dot{m}} = \frac{h_1 - h_2}{h_1 - h_f} + r \left(\frac{h_{a,r} - h_{d,r}}{h_1 - h_f} \right) \qquad \frac{\dot{m}_r}{\dot{m}} = r
$$

- The change in enthalpy values from $(h_d \rightarrow h_a)$
of the refrigerant of the refrigerant.
- The refrigerant flow (m_r) rate across the 3 fluid heat exchanger.

Introduction

- From the above equations, it is clear that the liquid yield and work requirement are dependent on the parameters like refrigerant flow rate (m_r) , compression pressure and precooling temperature.
- By varying these parameters, the performance of the system can be optimized.
- Hence, there is a need to study the effect of the various parameters on the performance of the system for the proper design.

Introduction

•

- One such parameter which is of great importance is the refrigerant flow rate ratio r.
- • The state of the working fluid entering the refrigeration compressor is very important.

•

- Let the heat change of the refrigerant be represented as $\mathbf{Q}_{\mathsf{ref}} = \mathsf{r}(\mathbf{h}_{\mathsf{r, d}} - \mathbf{h}_{\mathsf{r, a}}).$ **Introduction**
 \cdot Let the heat chan

refrigerant be rep

as $Q_{\text{ref}} = r(h_{r, d} - \frac{d}{2})$

Similarly, the requestion
	- • Similarly, the required heat change for Linde –Hampson cycle be denoted as Q_{LHS} .
	- The relative values of $\mathbf{Q_{ref}}$ and $\mathbf{Q}_{\textsf{LHS}}$ determine the state of the refrigerant at the point **a**.

Introduction

- •In the 1st case, the value of T_3 would not be equal to $\mathsf{T}_{\mathsf{d}}.$
- The 2nd case is the condition to achieve y_{max} .
- •• Since $\mathbf{Q}_{\mathsf{ref}} > \mathbf{Q}_{\mathsf{LHS}}$ in the 3rd rate case, the liquid would enter the refrigerating compressor.

Introduction

•

- That is any excess flow of refrigerant than required, results into an excess available heat content.
- • As a result, the state of fluid at the point a would be a two – phase mixture which is unfavorable.
- • Hence, for a given operating conditions, there is an optimum ^r.

Introduction

- •• This is better explained through a tutorial solved in the subsequent slides.
- •• Various flow ratio **r** values are taken both below and above the limiting value to explain the principle.

Tutorial

Part 1

 • A Precooled Linde – Hampson System has Nitrogen and R134a as primary and secondary fluids respectively. Determine the Liquid yield and FOM. The operating conditions and other useful data are as given below.

Tutorial

Part 2

• Also, calculate the y_{max} for each of the pressures •mentioned and their corresponding **r** values. Plot the data graphically and comment on the nature of y, work requirement, FOM versus r.

Tutorial

Given : Part 1

Cycle : Precooled L – H Cycle with N₂.
Temperature : 300 K Temperature : 300 KRefrigerant : R134a, 1 atm \rightarrow 8 atm

For this cycle, Calculate and comment

- 1Liquid Yield ^y
- 2Work/unit mass of gas compressed
- 3Work/unit mass of gas liquefied
- 4FOM

Tutorial

Given : Part 2

Cycle : Precooled L – H Cycle with N₂.
Temperature : 300 K Temperature : 300 KRefrigerant : R134a, 1 atm \rightarrow 8 atm

For this cycle, Calculate and comment

- 11 Liquid Yield y max
- 2 Work/unit mass of gas compressed 2
- 3Work/unit mass of gas liquefied
- 4FOM

Methodology

- The two pressures conditions under study are 101.3 bar and 202.6 bar.
- The Liquid yield and FOM are calculated only for 101.3 bar pressure condition.
- Also, the calculations for y_{max} and for an r value beyond y_{max} condition are calculated only for
101.3 have recovered and times 101.3 bar pressure condition.
- Calculations pertaining to 202.6 bar condition are left as an exercise to students.

• h_d expansion is isenthalpic. $_{d}$ = h_c , since the

$$
-\frac{W_c}{\dot{m}} = 300(4.42 - 0.42) - (462 - 29) = 767 \text{ J/g}
$$

Tutorial : Part - 1

- The T s diagram for a
Precooled Linde Precooled Linde – Hampson system is as shown.
- The state properties are \overrightarrow{A} h=const as tabulated below.

Tutorial : Part – ¹

• Liquid yield

CRYOGENIC ENGINEERING $\begin{array}{ll} \text{Vork/unit mass of }\mathbf{N_{2}} \ \text{onpressed} \ \text{onpressed} \ \text{N_{2}} \ \text{in} = T_{1}(s_{1}-s_{2})-(h_{1}-h_{2}) \ \text{in} \ \text{in} \ \text{V}_{2} & \text{I} \ \text{on} \ (h_{b,r}-h_{a,r}) \end{array}$ • Work/unit mass of <mark>N₂</mark> compressed W_{\cdot} $(s_1 - s_2) - (h_1 - h_2)$ $\frac{C}{m} = T_1 (s_1 - s_2) - (h_1 - h_2)$ $\frac{c}{\sqrt{c}}$ $-\frac{1}{m} = I_1 (S_1 - S_2) - (I_1 - I_2)$ $1 \binom{5}{1}$ 52 $\binom{14}{1}$ $\binom{12}{2}$ $\left(h_{b,r} - h_{a,r} \right)$ $r h_{b,r} - h_a$ b,r a,r $, '$, $, '$ N, ¹ ² ^f ^a ^b ^c p (bar) | 1.013 | 101.3 | 1.013 | 1.013 | 8.104 | 8.104
| דוגר | דוג
| דוגר | דוגר T (K) ³⁰⁰ ³⁰⁰ ⁷⁷ ²⁴⁷ ³¹⁴ ³⁰⁵ h (J/g) 462 445 29 380 420 240
: (1/aK) 4.42 3.1 0.42 2134a s (J/gK) 4.42 3.1 0.42 R134a $\left. \frac{W_c}{m} \right|_1 = 300 (4.42 - 3.1) - (462 - 445) + 0.05 (420 - 380) = 0.001$ $-\frac{c}{m}\Big|_1 = 300(4.42-3.1) - (462-445) + 0.05(420-380) = 381J/g$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial : Part – ¹

• Liquid yield

•Work/unit mass of N_2 compressed

Tutorial : Part - 1		
Work/unit mass of N ₂	N ₂ r	Point 2
$-\frac{W_c}{\dot{m}} = T_1(s_1 - s_2) - (h_1 - h_2)$	II 0.07 101.3 bar	
$+r(h_{b,r} - h_{a,r})$	II 0.07 101.3 bar	

$$
\left. \frac{W_c}{\dot{m}} \right|_2 = 300 \left(4.42 - 3.1 \right) - \left(462 - 445 \right) + 0.07 \left(420 - 380 \right) = 381.8
$$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial : Part – ²

• r corresponding to $\mathsf{y}_{\mathsf{max}}$

 \bullet Work/unit mass of N₂ compressed $\begin{array}{ll} \text{Vork/unit mass of }\mathbf{N_{2}} \ \text{ompressed} & \text{Q }\mathsf{y_{max}} \ \hline \frac{V_{c}}{m} = T_{1}(s_{1}-s_{2}) - (h_{1}-h_{2}) & \text{r=0.11} & \text{101.3 bar} \ + r\left(h_{b,r}-h_{a,r}\right) & \end{array}$

$$
-\frac{W_c}{\dot{m}} = T_1 (s_1 - s_2) - (h_1 - h_2)
$$

−

$$
\begin{array}{c|c}\n\hline\n\textcircled{a y}_{\text{max}} & \text{Point 2} \\
\text{r=0.11} & 101.3 \text{ ba}\n\end{array}
$$

$+r(h_{b,r} - h_{a,r})$						
N ₂	1	2	f	a	b	c
p (bar)	1.013	101.3	1.013	1.013	8.104	8.104
T (K)	300	300	77	247	314	305
h (J/g)	462	445	29	380	420	240
s (J/gK)	4.42	3.1	0.42	R134a		

$$
\left. \frac{W_c}{\dot{m}} \right|_3 = 300 \left(4.42 - 3.1 \right) - \left(462 - 445 \right) + 0.11 \left(420 - 380 \right) = 384 J / g
$$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial : Part – ²

•

- From the above calculations, the value of **r** corresponding to \mathbf{y}_{max} is 0.11 at the compression pressure of 101.3 bar.
- •For $r= 0.12$, the enthalpy of the refrigerant at the state **a** is calculated by applying the energy balance across the 3 – fluid heat exchanger.

Tutorial : Part – ²

•

 Consider a control volume enclosing the 3 fluid heat exchanger.

• Applying the heat balance, we have

$$
\dot{m}_r h_{d,r} + \dot{m} h_2 + \left(\dot{m} - \dot{m}_f\right) h_6
$$

= $\dot{m}_r h_{a,r} + \dot{m}_3 h_3 + \left(\dot{m} - \dot{m}_f\right) h_1$

Tutorial : Part – ²

•Rearranging the terms,

$$
\dot{m}_r \left(h_{a,r} - h_{d,r} \right) + \dot{m} \left(h_3 - h_2 + h_1 - h_6 \right) \n= \dot{m}_f \left(h_1 - h_6 \right)
$$

•Denoting the ratios

$$
r(h_{a,r} - h_{d,r}) + (h_3 - h_2 + h_1 - h_6)
$$

= $y(h_1 - h_6)$

CRYOGENIC ENGINEERING Tutorial : Part – ² $r(h_{a,r} - h_{d,r}) + (h_3 - h_2 + h_1 - h_6) = y(h_1 - h_6)$

• The equation of **y** at this refrigerant flow rate **r** is given by

$$
y = \frac{h_1 - h_2}{h_1 - h_f} + r \left(\frac{h_{a,r} - h_{d,r}}{h_1 - h_f} \right)
$$

- The only unknowns in these two equations are $\bm{{\mathsf{h}}}_{\mathsf{a},\mathsf{r}}$ and $\bm{{\mathsf{y}}}.$
- The values of $h_{a,r}$ and y are obtained by solving these two simulations equations.

Tutorial : Part – ²

• Substituting the values, we have

$$
y = r \left(\frac{h_{a,r} - h_{d,r}}{h_1 - h_6} \right) + \left(\frac{h_3 - h_2 + h_1 - h_6}{h_1 - h_6} \right) \left[54y - 0.12h_{a,r} = -39.8 \right]
$$

$$
y = \frac{h_1 - h_2 + r(h_{a,r} - h_{d,r})}{h_1 - h_f}
$$

$$
h_{a,r} - 3610.1y = 98.55
$$

Tutorial : Part – ²

- Solving the simultaneous equations we have values as $y_4 = 0.074$ $h_{a,r} = 364.9$
- It is important to note that the value of \boldsymbol{y} is same as $\boldsymbol{\mathsf{y}}_{\mathsf{max}} = 0.074$.
- Also, the value of enthalpy at point **a** after the heat exchanger for r=0.12 is 364.9 J/g.
- This value is less than the value at the saturated vapor (380 J/g) indicating that the fluid is now a two – phase mixture.

CRYOGENIC ENGINEERING $\begin{array}{ll} \text{\textcolor{red}{\bf Tutorial : Part - 2}}\\ \text{\textcolor{red}{\bf \textcolor{red}{\bf \textcolor{red}{$ • Work/unit mass of <mark>N₂</mark> compressed W_{\cdot} $(s_1 - s_2) - (h_1 - h_2)$ $\frac{C}{m} = T_1 (s_1 - s_2) - (h_1 - h_2)$ $\frac{c}{\sqrt{c}}$ $-\frac{1}{m} = I_1 (S_1 - S_2) - (I_1 - I_2)$ $1 \binom{10}{1}$ $1 \binom{2}{2}$ $\binom{10}{1}$ $1 \binom{2}{2}$ $\left(h_{b,r} - h_{a,r} \right)$ $r h_{b,r} - h_a$ b,r a,r , α , α , β N, ¹ ² ^f ^a ^b ^c p (bar) 1.013 101.3 1.013 1.013 8.104 8.104
T (K) 300 300 77 247 314 305 T (K) ³⁰⁰ ³⁰⁰ ⁷⁷ ²⁴⁷ ³¹⁴ ³⁰⁵ h (J/g) 462 445 29 364.9 420 240
: (1/aK) 4.42 3.1 0.42 2134a s (J/gK) | 4.42 | 3.1 | 0.42 | R134a
|- W_{c} $(4.42 - 3.1) - (462 - 445) + 0.12(420 - 364.8)$
4 $\dot{m}|_4$ = 385.6*J* / g = 385.6*J* / g ɺ

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial : Part – ¹

- • Tabulating the results for 101.3 bar pressure condition, we have the following comparison for the various values of
	- \bullet Refrigerant flow rate (m_r) .

Tutorial : Part – ¹

- • Similarly, calculating the results for 202.6 bar pressure condition, we have the following comparison for the various values of
	- \bullet Refrigerant flow rate (m_r) .

Tutorial : Part - 2
eld v/s. r 101.3 r

•Liquid yield v/s. r

Tutorial : Part – ²

•Liquid yield v/s. r

- It is clear that the yield of the system increases with the increase in the refrigerant flow rate for a pressure.
- As the compression pressure increases, the yield increases for a given amount of the $r \frac{sin \theta - sin \theta}{r}$ refrigerant flow rate.

Tutorial : Part – ²

•Liquid yield v/s. r

- For each compression pressure, the yield reaches to a maximum values and thereafter, it
- This value of **r** is the limiting value.

Tutorial : Part – ²

•Liquid yield v/s. r

- Any additional increase in **r** leads to the liquid flow into the refrigerant compressor, which is not \mathcal{Y} $\begin{array}{|c|c|c|c|c|} \hline \end{array}$ a desirable condition.
	- Also, the limiting value increases with the increase in the compression pressure.

Tutorial : Part – ²

Tutorial : Part – ²

•Work/unit mass compressed v/s. r

- We see that the work/unit mass of gas compressed increases with the increase in the W $\begin{array}{c|c|c|c|c} \hline \end{array}$ w $\begin{array}{c|c|c} \multicolumn{1}{c|c|c} \multicolumn{1}{c$ given compression pressure.
	- As the compression pressure increases, work requirement also increases.

Tutorial : Part – ²

Tutorial : Part – ²

•Work/unit mass compressed v/s. r

- For each compression pressure, the increase in the work requirement is very small.
- • Hence, the work requirement for the precooling compressor is negligible as compared to that of liquefaction compressor.

Tutorial : Part – ²

• Work/unit mass Liq<u>uified v/s. r</u>

Tutorial : Part – ²

• Work/unit mass Liquified v/s. r

- For each compression pressure, the work requirement decreases with the increase in the
- As the compression pressure increases, the work requirement decreases for a given amount of the refrigerant flow rate r.

Tutorial : Part – ²

• Work/unit mass Liquified v/s. r

- The limiting values of **r** are as shown.
- Plotting the values of **r** above the limiting values we have as shown

Tutorial : Part – ²

• Work/unit mass Liquified v/s. r

- Any further increase in •the **r**, increases the work input. But under such conditions, the liquid \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} and \mathbb{R} refrigerant would enter the precooling compressor.
	- This is undesirable for compressor operation.

Tutorial : Part – 2

Tutorial : Part – ²

- For each compression pressure, the FOM increases with the increase in the refrigerant flow rate.
- As the compression pressure increases, the FOM increase for a given amount of the refrigerant flow rate **r**.

•

Tutorial : Part – ²

- FOM v/s. r
- The limiting values of **r** are as shown.

•• Any further increase in the r, decreases the FOM. But, the liquid refrigerant would enter the precooling compressor.

Summary

- For a Precooled Linde Hampson system, the
• liguid vield and work requirement are denende liquid yield and work requirement are dependent on the parameters like refrigerant flow rate (m_r) , compression pressure and precooling temperature.
- It is important to note that the working fluid entering the refrigeration compressor should be in the gaseous state.
- If $\mathbf{Q}_{\text{ref}} > \mathbf{Q}_{\text{LHS}}$, the liquid enters the refrigerating compressor compressor.

Summary

- The yield of the system increases with the increase in the refrigerant flow rate and the compression pressure.
- The value of **r** corresponding to maximum yield is called as the limiting value.
- This limiting value of **r** increases with the increase in the compression pressure.
- Work/unit mass of gas compressed increases with the increase in the refrigerant flow rate and compression pressure.

Summary

- The work requirement for the precooling compressor is negligible as compared to that of liquefaction compressor.
- Work/unit mass of the gas liquefied decreases with the increase in the refrigerant flow rate and compression pressure.
- For a given compression pressure, this work falls to the minimum at the limiting value of r.

Summary

- Figure of Merit (FOM) increases with the increase •in the refrigerant flow rate and the compression pressure.
- For a given compression pressure, FOM reaches to a maxima at the limiting value of ^r.

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay