Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No - 14

Earlier Lecture

- In the earlier lectures, we have seen an Ideal Thermodynamic cycle, in which all the gas that is compressed is liquefied.
- In a Linde Hampson system, a heat exchanger is used to conserve cold. In this system, only a part of the gas that is compressed is liquefied.
- In a Precooled Linde Hampson system, the liquid yield and FOM are improved by precooling the working fluid using an independent refrigerating system.

Earlier Lecture

- In a Precooled Linde Hampson system, the liquid yield and FOM are dependent on refrigerant flow rate (m_r), compression pressure and precooling temperature.
- The yield of the system increases with the increase in the refrigerant flow rate and the compression pressure.
- In this system, the mass ratio (r) corresponding to maximum yield is called as the limiting value. It increases with the increase in the compression pressure.

Earlier Lecture

- Work/unit mass of gas compressed increases with the increase in the refrigerant flow rate and compression pressure.
- Work/unit mass of the gas liquefied decreases with the increase in the refrigerant flow rate and compression pressure.
- Figure of Merit (FOM) increases with the increase in the refrigerant flow rate and the compression pressure.

Outline of the Lecture

Topic : Gas Liquefaction and Refrigeration Systems (contd)

- Linde Dual Pressure System
 - Liquid yield
 - Work requirement
- Parametric study

Introduction

Mathematically, the work requirement for an ideal isothermal compression process is given by,

- The work requirement decreases either with the decrease in the mass flow rate or with the decrease in the compression ratio.
- In a Linde Dual Pressure system, the work requirement decreases, when the compression of fluid is done in two stages and for different mass flow rates (m).

- The system consists of two compressors, a 3 – fluid heat exchanger, two J – T expansion devices, two liquid containers and a makeup gas connection.
- In this system, the entire mass flow rate of the gas is not compressed to the required high pressure, as was the case in the previous systems.

- Only a part of the mass flow rate $(m - m_i)$, is compressed to an intermediate pressure from $1 \rightarrow 2$.
 - Thereafter, mass flow rate $\mathbf{m_i}$ is added to the above stream and it is then compressed from $\mathbf{2} \rightarrow \mathbf{3}$.

- This arrangement not only compresses the gas in two stages but also reduces the work requirement.
- The stream \mathbf{m}_{i} along with the return stream from the container – **2** is used to precool the gas at point **3** in the 3 – fluid heat exchanger.

- It is important to note the 3 – fluid heat exchanger has three streams with the three different flow rates. They are
 - (m)
 - (m_i)
 - (m m_f m_i)

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Linde Dual – Pressure System

Consider a control volume for this system as shown in the figure.

Applying the 1st Law, we have

$$\dot{m}h_3 = \dot{m}_i h_2 + \left(\dot{m} - \dot{m}_f - \dot{m}_i\right) h_1 + \dot{m}_f h_f$$

Linde Dual – Pressure System

Rearranging the terms, we have

$$\frac{\dot{m}_f}{\dot{m}} = \left(\frac{h_1 - h_3}{h_1 - h_f}\right) - \frac{\dot{m}_i}{\dot{m}} \left(\frac{h_1 - h_2}{h_1 - h_f}\right)$$

Denoting the intermediate

mass ratio

We have the liquid yield

as,
$$y = \frac{h_1 - h_3}{h_1 - h_f} - i \left(\frac{h_1 - h_2}{h_1 - h_f} \right)$$

Linde Dual – Pressure System

$$y = \frac{h_1 - h_3}{h_1 - h_f} - i\left(\frac{h_1 - h_2}{h_1 - h_f}\right)$$

- The first term is the yield for a simple L – H system considering that the entire mass of the gas is compressed from $1 \rightarrow 3$.
- The second term is the reduction in the liquid yield occurring due to the modification.

Linde Dual – Pressure System

For the work requirement, consider a control volume for the compressor – **1** as shown in the figure.

Using 1st Law for the above table, we get

$$E_{in} = E_{out}$$

$$(\dot{m} - \dot{m}_i)h_1 - W_{c1} = (\dot{m} - \dot{m}_i)h_2 - Q_{R1}$$

Linde Dual – Pressure System

Rearranging the terms, we have

$$Q_{R1} - W_{c1} = (\dot{m} - \dot{m}_i)(h_2 - h_1)$$

By
$$2^{nd}$$
 Law, the Q_{R1} is given by,

$$Q_{R1} = \left(\dot{m} - \dot{m}_i\right) T_1 \left(s_2 - s_1\right)$$

 $-W_{c1} = (\dot{m} - \dot{m}_i)(T_1(s_1 - s_2) -$

 $(h_1 - h_2)$

Combining the above equations, we have

- The mass flow rate across
 the compressor 2 is
 (m).
- Following the similar procedure for the work requirement for the compressor – **2**, we have,

$$-W_{c2} = \dot{m} \left(T_1 \left(s_2 - s_3 \right) - \left(h_2 - h_3 \right) \right)$$

Linde Dual – Pressure System

The total work requirement is given by

$$W_c = W_{c1} + W_{c2}$$

Denoting the ratio

We have, the work/unit mass of gas compressed as given by

$$-\frac{W_c}{\dot{m}} = T_1(s_1 - s_3) - (h_1 - h_3)$$
$$-i(T_1(s_1 - s_2) - (h_1 - h_2))$$

$$-\frac{W_c}{\dot{m}} = T_1(s_1 - s_3) - (h_1 - h_3)$$
$$-i(T_1(s_1 - s_2) - (h_1 - h_2))$$

- The first term is the work requirement for simple system considering that the entire mass of the gas is compressed from $1 \rightarrow 3$.
 - The second term is the reduction in the work requirement occurring due to the modification.

Tutorial

 Determine W/m_f & FOM for a Linde Dual – Pressure System with Argon as working fluid for the following intermediate pressures. The system operates between 1.013 bar (1 atm) and 121.5 bar (120 atm). The intermediate mass ratio i is
 0.6.

Ar	Int. Pr. 2
Ι	4.05 bar
II	20.3 bar
III	75.9 bar
IV	101.3 bar

 Repeat the above problem for i = 0.7. Plot the data graphically and comment on the nature of y, W/m_f, FOM versus i.

Tutorial

Given

Cycle : Linde Dual – Pressure System Working Pressure : 1 atm \rightarrow P_i \rightarrow 120 atm Working Fluid : Argon Temperature : 300 K Intermediate mass ratio : i = 0.6 & 0.7

For above System, Calculate

1 Work/unit mass of gas liquefied and FOM

Ar	Int. Pr. 2
Ι	4.05 bar
II	20.3 bar
III	75.9 bar
IV	101.3 bar

Methodology

- The two mass ratio (i) conditions under study are 0.6 and 0.7.
- In this tutorial, the liquid yield and work/unit mass of gas liquefied are calculated only for i = 0.6 and 4.05 bar as intermediate pressure condition.
- All other calculations pertaining to i = 0.6 & 0.7 and for all other intermediate pressure conditions are left as an exercise to students.

Tutorial

The enthalpies and entropies are as given below.

Tutorial

Ar	i	Int. Pr. 2
Ι	0.6	4.05 bar

- The T s diagram for a Linde Dual – Pressure system is as shown.
- The compression process is from 1 atm
 → 4 atm → 120 atm, As shown in the figure.

25

Tutorial

Liquid yield

Tutorial

 Work/unit mass of Ar compressed

$$i = 0.6$$

$$-\frac{W_c}{\dot{m}} = T_1(s_1 - s_3) - (h_1 - h_3) - i(T_1(s_1 - s_2) - (h_1 - h_2))$$

	1	2	3	f
p (bar)	1.013	4.05	121.5	1.013
T (K)	300	300	300	87.3
h (J/g)	349	348	326	75
s (J/gK)	3.85	3.6	2.84	1.4

$$-\frac{W_c}{\dot{m}} = \frac{300(3.85 - 2.84) - (349 - 326)}{-0.6(300(3.85 - 3.6) - (349 - 348))} = 235.6 J / g$$

Tutorial

Work/unit mass of Ar liquefied

• FOM

$$-\frac{W_i}{\dot{m}_f} = 461$$

$$FOM = \frac{\frac{W_i}{\dot{m}_f}}{\frac{W_c}{\dot{m}_f}} = \frac{461}{2883.7} = 0.1598$$

Tutorial

- Tabulating the results for i = 0.6, we have the following comparison for the various values of
 - Intermediate pressure.

	Int. Pressure	У	$-\frac{W}{\dot{m}}$	$-\frac{W}{\dot{m}_f}$	FOM
Ι	4.05 bar	0.0817	235.6	2883.7	0.1598
II	20.3 bar	0.0752	172.6	2295.2	0.2008
III	75.9 bar	0.0512	118.0	2304.6	0.2000
IV	101.3 bar	0.0424	111.4	2627.4	0.1754

Tutorial

- Similarly, calculating the results for i = 0.7, we have the following comparison for the various values of
 - Intermediate pressure.

	Int. Pressure	У	$-\frac{W}{\dot{m}}$	$-\frac{W}{\dot{m}_{f}}$	FOM
Ι	4.05 bar	0.0814	228.2	2803.4	0.1644
II	20.3 bar	0.0738	154.7	2096.2	0.2199
III	75.9 bar	0.0457	91.0	1991.2	0.2315
IV	101.3 bar	0.0355	83.3	2346.5	0.1964

Tutorial

ullet

Liquid yield v/s. i • The Plot for **y** versus **i** for different pressures is as shown.

i=0.6	Pi	У
	4.05 bar	0.0817
II	20.3 bar	0.0752
III	75.9 bar	0.0512
IV	101.3 bar	0.0424

i=0.7	Pi	y
I	4.05 bar	0.0814
II	20.3 bar	0.0738
III	75.9 bar	0.0457
IV	101.3 bar	0.0355

Tutorial

Liquid yield v/s. i

 For a given value of mass ratio i, the yield (dotted line) of the system decreases with the increase in the intermediate pressure.

As the mass ratio **i** increases, the yield of the system decreases because, the mass of gas actually expanded in J – T device decreases.

Tutorial

- W/m v/s.i 0.09 240 Linde Dual -**Pressure System** 220 0.08 200 0.07 180 Y Ŵ 160 0.06 m140 0.05 2 0 120 0.04 100 0.03 80 2 42 62 22 82 102 P_i
- The Plot for W/m versus
 i for different pressures
 is as shown.

i=0.6	Pi	-W / m๋
I	4.05 bar	235.6
II	20.3 bar	172.6
III	75.9 bar	118.0
IV	101.3 bar	111.4

i=(0.7	Pi	$-W/\dot{m}$
	L	4.05 bar	228.2
I	Ι	20.3 bar	154.7
I	II	75.9 bar	91.0
Ι	V	101.3 bar	83.3

Tutorial

- For a given value of mass ratio i, the W/m (solid line) of the system decreases with the increase in the intermediate pressure.
- As the mass ratio i increases, the W/m decreases because, the more of the mass flow rate is bypassed from compressor – 1.

Tutorial

- It is important to note that, initially the slope of
 W/m (solid lines) is much steeper than that of y (dotted lines).
 - Later on, as the intermediate pressure increases, the slope of y (dotted lines) is steeper while the slope **W/m** (solid lines) decreases.

Tutorial

 The Plot for W/m_f versus i for different pressures 2900 Linde Dual is as shown. **Pressure System** i=0.6 Ρ. / *m* 2700 4.05 bar 2883.7 'റി 20.3 bar 2295.2 TT 2500 $\frac{\dot{W}}{\dot{m}_{t}}$ 75.9 bar 2304.6 III IV 101.3 bar 2627.4 2300 i=0.7 Ρ. *•*<u>.</u> 2100 4.05 bar 2803.4 20.3 bar 2096.2 TT 1900 1991.2 III 75.9 bar 42 62 82 2 22 102 P_i 101.3 bar 2346.5 IV

• W/m_f v/s. i

• W/m_f v/s. i

Tutorial

- 2900 Linde Dual -**Pressure System** 2700 6 2500 $\frac{\dot{W}}{\dot{m}_{1}}$ 2300 2100 \mathcal{O} 1900 42 62 82 102 2 22 P_i
- Mathematically,

 W/m_f being a ratio of W/m and liquid y, the relative decrease in the numerator and denominator determines the slope of the curve of W/m_f.

Tutorial

- W/m_f v/s. i 2900 Linde Dual -**Pressure System** 2700 6 2500 $\frac{\dot{W}}{\dot{m}_{t}}$ 2300 2100 Ó 1900 42 62 82 102 2 22 \underline{P}_i
- For a mass ratio i, the W/m_f decreases with the increase in the intermediate pressure.
 - This work falls to a minima and then increases with the increase in the intermediate pressure.
 - The working point is a compromised value between y and (W/m_f)_{min}.

Tutorial

• FOM v/s.i

 The Plot for FOM versus i for different pressures is as shown.

i	=0.6	P _i	FOM
	Ι	4.05 bar	0.1598
	II	20.3 bar	0.2008
	III	75.9 bar	0.2000
	IV	101.3 bar	0.1754
			•••••

i=0	.7	Pi	FOM
I		4.05 bar	0.1644
IJ		20.3 bar	0.2199
II	I	75.9 bar	0.2315
I\	/	101.3 bar	0.1964

Tutorial

• FOM v/s. i

- For a mass ratio i, the FOM increases with the increase in the intermediate pressure.
- With the further increase in the intermediate pressure, the FOM reaches a maxima value and thereby it decreases.

•

Tutorial

- FOM v/s.i 0.24 0.23 0.22 0.21 0.2 FOM 0.19 0.18 0.17 0.16 Linde Dual -**Pressure System** 0.15 42 62 82 102 2 22 \underline{P}_i
- It is important to note that the **FOM** reaches a maxima value at the same intermediate pressure at which the **W/m**_f reaches a minima, for a given value of mass ratio **i**.

Assignment

- Determine y, W/m, W/m_f and FOM for a Linde Dual – Pressure System with Argon as working fluid. The system operates between 1.013 bar (1 atm) and 202.6 bar (200 atm). The intermediate mass ratio i=0.6.
- Ans: 0.09115, 155 J/g, 1700.49 J/g, 0.2711.

Summary

- Linde Dual pressure system is a modification of a Simple Linde – Hampson system in order to reduce the work requirement.
- In this system, the entire mass flow rate of the gas is not compressed to the required high pressure, as was the case in the previous systems.
- In this system, the work requirement decreases when the compression of fluid is done in two stages and for different mass flow rates.

Summary

The yield of the system is given by the following equation.

$$y = \frac{h_{1} - h_{3}}{h_{1} - h_{f}} - i\left(\frac{h_{1} - h_{2}}{h_{1} - h_{f}}\right)$$

The work requirement is given by

$$-\frac{W_c}{\dot{m}} = T_1(s_1 - s_3) - (h_1 - h_3) - i(T_1(s_1 - s_2) - (h_1 - h_2))$$

 In the above equations, the first term corresponds to the L – H system and the second term is the reduction occurring due to the modification.

Summary

- For a given value of mass ratio i, the y and W/m of the system decreases with the increase in the intermediate pressure.
- For a mass ratio i, the W/m_f passes through a minima as the intermediate pressure increases.
- On the other hand, for a mass ratio **i**, the FOM passes through a maxima with the increase in the intermediate pressure.

Summary

- The operating point of the system is a compromised value between the y and the (W/m_f)_{min}.
- It is important to note that the FOM reaches a maxima value at the same intermediate pressure at which the W/m_f reaches a minima, for a given value of mass ratio i.

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay