Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No - 15

Earlier Lecture

- In the earlier lectures, we have seen an Ideal Thermodynamic cycle, in which all the gas that is compressed is liquefied.
- In a Linde Hampson system, a heat exchanger is used to conserve cold and only a part of the gas that is compressed is liquefied.
- In a Precooled Linde Hampson system, an independent refrigerating system is used. The mass ratio (r) corresponding to the maximum yield is called as the limiting value.

Earlier Lecture

- The Linde Dual Pressure system is a modification of the Simple Linde – Hampson system in order to reduce the work requirement.
- In this system, the work requirement/mass of gas liquefied decreases when the compression of fluid is done in two stages and for different mass flow rates.

Outline of the Lecture

Topic : Gas Liquefaction and Refrigeration Systems (contd)

- Claude System In the year 1920, Claude developed an air liquefaction system and established l'Air Liquide.
 - Liquid yield
 - Work requirement
 - Parametric study

Introduction

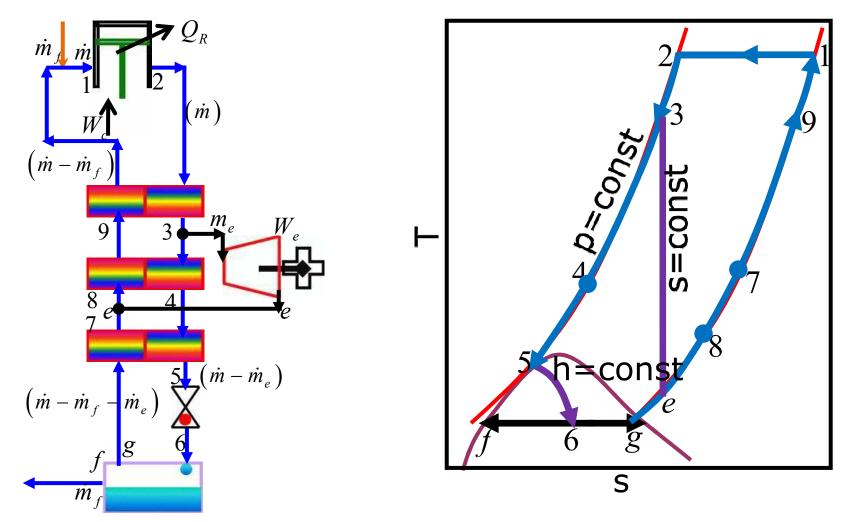
- In order to achieve a better performance and to approach ideality, the expansion process should be a reversible process.
- In the earlier lecture, we have seen that a J T expansion is an irreversible isenthalpic expansion and expansion using an expansion engine is an reversible isentropic process.
- For any gas, an isentropic expansion results in lower temperature irrespective of its inversion temperature (**T**_{INV}).

 Q_{R}

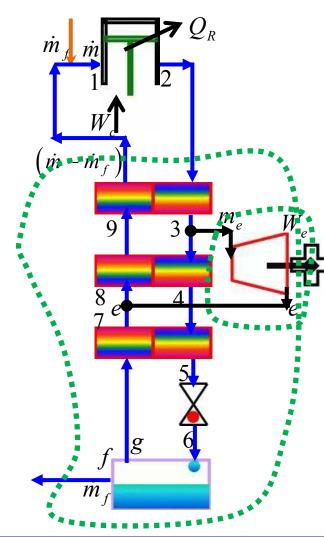
m

9

g


Claude System

- The schematic of the Claude System is as shown.
- It consists of a compressor, three 2 – fluid heat exchangers, a J – T expansion device and a make up gas connection.
- The system also has an expansion engine operating across the second heat exchanger as shown in the figure.

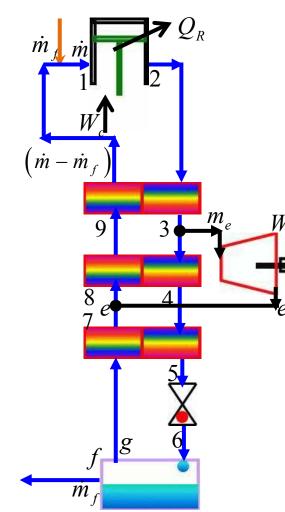

Claude System

- Q_{R} m_{e} 9 g
- In this system, the energy content in the gas is removed by allowing it to do some work in an expansion device.
 - As shown in the figure, a part of the main stream of gas is expanded from $\mathbf{3} \rightarrow \mathbf{e}$ and is reunited with the return stream.
- This process of expansion is an reversible isentropic expansion.

Claude System

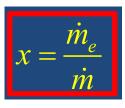
Claude System

 Consider a control volume as shown in the figure. Applying 1st Law, we have


$$\dot{m}h_2 = W_e + \left(\dot{m} - \dot{m}_f\right)h_1 + \dot{m}_fh_f$$

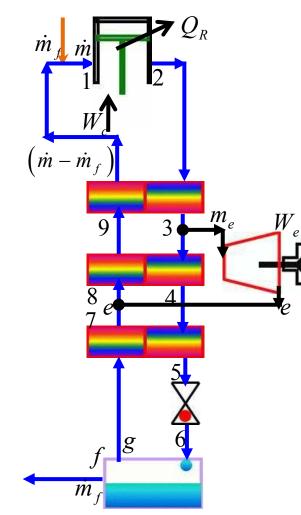
The Expander work output is given by $W_e = \dot{m}_e h_3 - \dot{m}_e h_e$

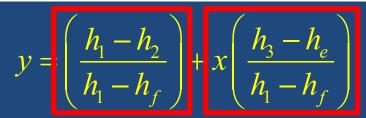
 Substituting the expression for W_e, we have


$$\dot{m}h_2 = \left(\dot{m} - \dot{m}_f\right)h_1 + \dot{m}_fh_f + \dot{m}_eh_3 - \dot{m}_eh_e$$

Claude System

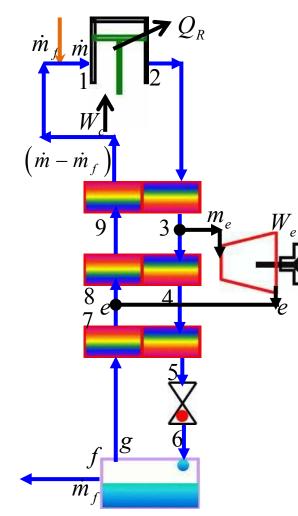
Rearranging the terms, we have

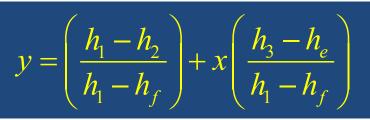

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$



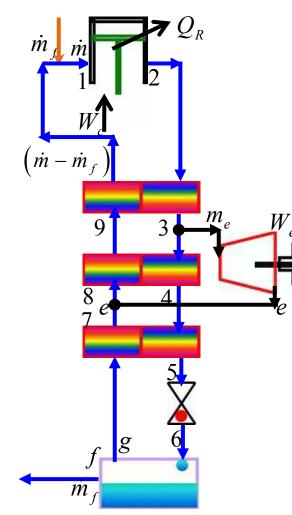
10

• Where, the expander mass flow ratio be denoted by **x**.

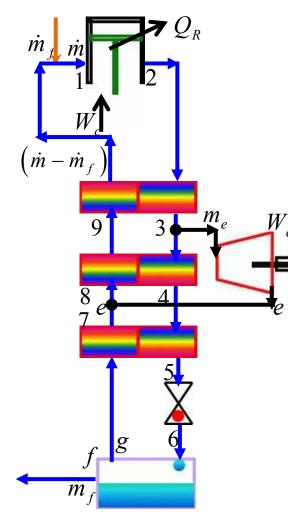

Claude System



- The 1st term is the yield for a simple L H system.
 - The 2nd term is the change in the yield occurring due to the expansion engine in the cycle.
- For a given initial and final conditions of **p**, the yield **y** depends on **h₃(T₃)** and **x**.


Claude System

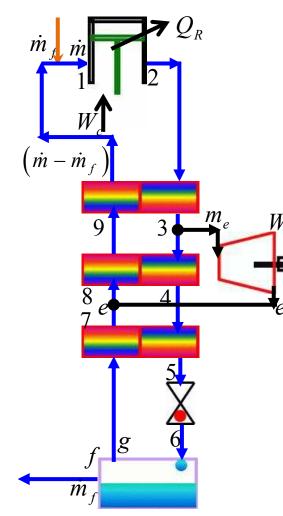
- However, if T₃ is held constant, the yield y is a linear function of x.
- But for a case of x=1, the yield y=0, which is not governed by this equation.
- For x=1, the gas in the return stream (m m_f m_e) is 0.


Claude System

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

- It means that in order to have a finite yield, (m m_f m_e) should always be >0.
- Dividing (m m_f m_e)>0 by m, we get x+y<1.
- Therefore, the above equation is valid only when x+y<1.

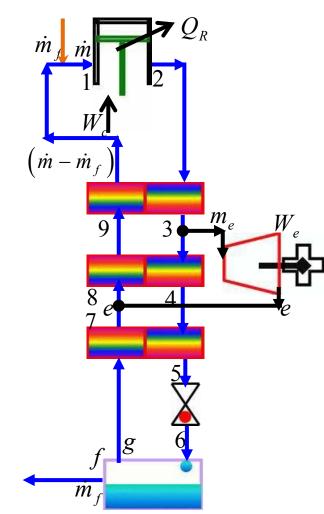
Claude System



$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

- The yield y of the system increases with the increase in the x for a constant value of T₃.
 - Based on y calculated from the above equation, when the sum is x+y>1, a limiting value of y may be calculated using x+y=0.99.
- Rearranging, we have **y=0.99-x**.

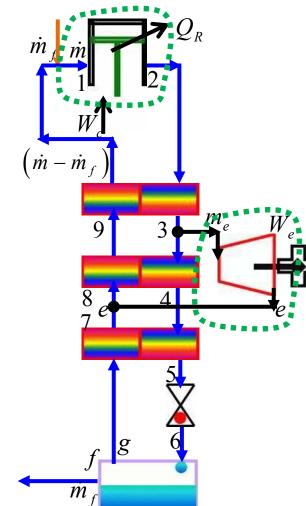
14


Claude System

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

- In summary, y is calculated using the above equation until x+y<1 or =0.99 is valid.
 - After which, a limiting value of **y** is given by **y=0.99-x**.
- This value is the maximum y that is possible, but the actual value may be less than this value.

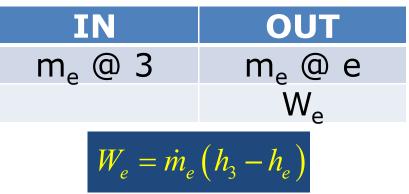
Claude System

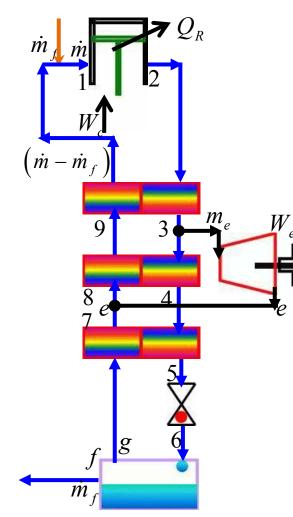

- It is clear that the work interaction of the system with the surroundings is due to
 - Compressor (inwards)
 - Expander (outwards)
 - The net work requirement, if the expander work is used in compression process, is given

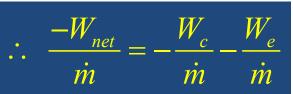
by

$$-W_{net} = -W_c - W_e$$

 where, -W_c is the work done on the system (negative).

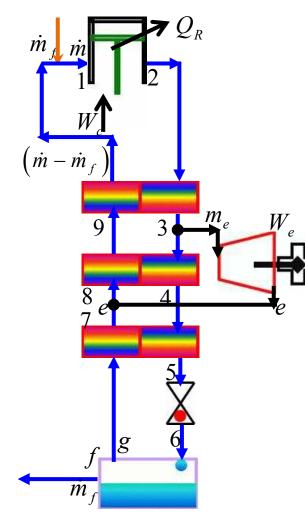

Claude System


As stated earlier, using a control volume, 1st and 2nd
 Laws for a compressor, we get


$$-W_{c} = \dot{m} \left(T_{1} \left(s_{1} - s_{2} \right) - \left(h_{1} - h_{2} \right) \right)$$

 Similarly, the control volume for an expansion engine, we get

Claude System


• Substituting the expressions, we have

$$-\frac{W_{net}}{\dot{m}} = \begin{cases} \left(T_1\left(s_1 - s_2\right) - \left(h_1 - h_2\right)\right) \\ -x\left(h_3 - h_e\right) \end{cases} \quad x = \frac{\dot{m}_e}{\dot{m}}$$

18

• Where, **x** is the expansion engine flow rate ratio.

Claude System

$$-\frac{W_{net}}{\dot{m}} = \begin{cases} \left(T_1(s_1 - s_2) - (h_1 - h_2)\right) \\ -x(h_3 - h_e) \end{cases}$$

 The first term is the work requirement for simple Linde

 Hampson system.

 The second term is the reduction in the work requirement occurring due to the modification.

Tutorial

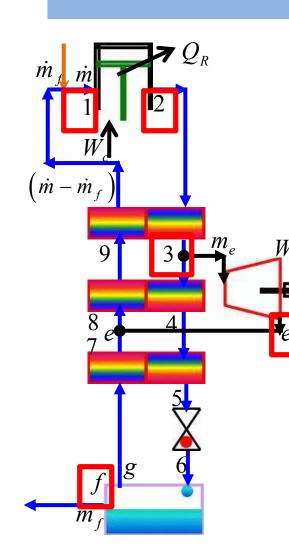
- A. Determine W/m_f for a Claude Cycle with N₂ as working fluid. The system operates between 1.013 bar (1 atm) and 40.52 bar (40 atm). The expander inlet T_3 is at 225 K. The expander flow ratio is varied between 0.1 and 0.9.
- B. Repeat the above problem for T₃ = 300 K, 275 K, 250 K and 225 K. Plot the data y, W/m_f versus x graphically and comment on the results.

Tutorial

Given

Cycle : Claude System Working Pressure : 1 atm \rightarrow 40 atm Working Fluid : Nitrogen T₃ : 300 K, 275 K, 250 K, 225 K Mass flow ratio : x = 0.1 \rightarrow 0.9

For above System, Calculate

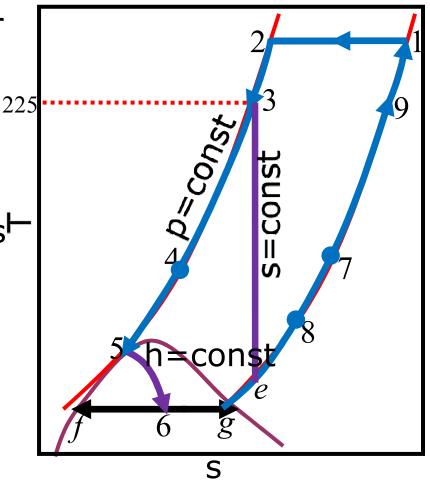

1 Work/unit mass of gas liquefied


N_2	Point 3
Ι	300 K
II	275 K
III	250 K
IV	225 K

Methodology

- In the part **A**, the expander inlet condition under study is 225 K at 40.52 bar.
- The expander mass flow ratio varies between 0.1 and 0.9.
- In this tutorial, the y, W/m_f is calculated only for x = 0.2 and 225 K as inlet condition.

Tutorial



 The point e is located on p=1bar isobar by drawing a vertical line from point 3.

Tutorial

- The T s diagram for a Claude System is as shown.
- The expander inlet condition and its mass⁺ flow ratio are 225 K and 0.2 respectively.

Tutorial

Liquid yield

$$y = \frac{h_1 - h_2}{h_1 - h_f} + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

X	Point 3			
0.2	225 K, 40 atm			

	1	2	3	e	f
p (bar)	1.013	40.52	40.52	1.013	1.013
T (K)	300	300	225	80	77
h (J/g)	462	453	369	228	29
s (J/gK)	4.42	3.3	3.1	3.1	3.0

 $y = \frac{(462 - 453)}{(462 - 29)} + 0.2\frac{(369 - 228)}{(462 - 29)} = 0.021 + 0.065 = 0.086$

Tutorial

Work/unit mass of N₂ compressed

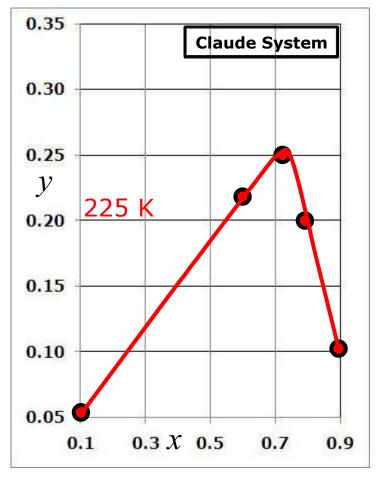
$$-\frac{W_c}{\dot{m}} = T_1(s_1 - s_2) - (h_1 - h_2) - x(h_3 - h_e)$$

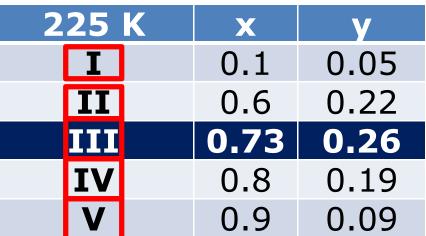
	1	2	3	е	f	
p (bar)	1.013	40.52	40.52	1.013	1.013	
T (K)	300	300	225	80	77	
h (J/g)	462	453	369	228	29	
s (J/gK)	4.42	3.3	3.1	3.1	3.0	
$-\frac{W_c}{\dot{m}} = 300(4.42 - 3.3) - (462 - 453) - 0.2(369 - 228)$						
					= 299 J /	

Tutorial

Work/unit mass of N₂ liquefied

$$-\frac{W_c}{\dot{m}} = 299 \qquad y = 0.086$$
$$-\frac{W_c}{\dot{m}_f} = -\frac{W_c}{y\dot{m}} = \frac{299}{0.086} = 3476.7 J / g$$

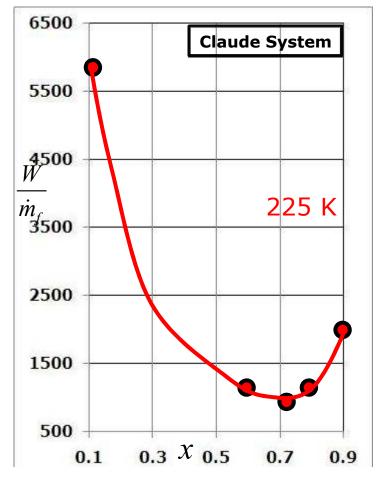

Tutorial

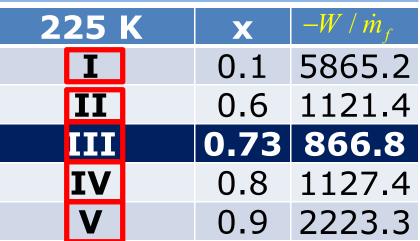

- Extending the calculations for all other values of x and tabulating the results, we have
- In the adjacent table, the equation for y is used from x=0.1 to 0.73. Thereafter, y=0.99-x is used.
- Actual y may be less than this value.

225						
X	У	W/m _f				
0.10	0.05	5865.2				
0.20	0.09	3478.0				
0.30	0.12	2403.0				
0.40	0.15	1791.6				
0.50	0.18	1397.0				
0.60	0.22	1121.4				
0.70	0.25	917.9				
0.73	0.26	866.8				
0.80	0.19	1127.4				
0.90	0.09	2223.3				

Tutorial

Liquid yield v/s. x





- From the plot, it is clear that **y** crosses a maxima with the increasing **x**.
- Beyond this maxima, the y is estimated as limiting value of y=0.99-x.

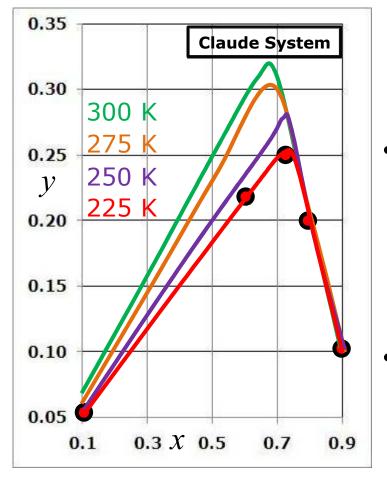
Tutorial

• W/m_f v/s. x

- The trend shows that the
 W/m_f crosses a minima
 with the increasing x.
- Beyond this minima, the
 W/m_f is estimated based on limiting value of y.

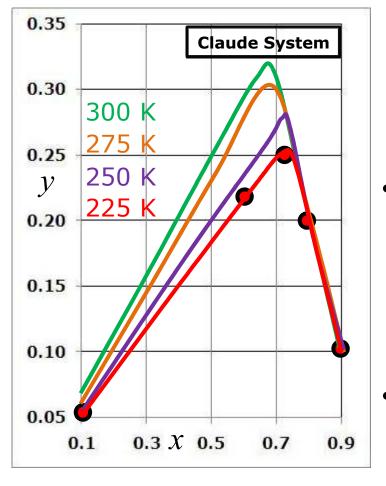
Tutorial

- All the calculations pertaining to part **B** are left as an exercise.
- The results for these calculations are as shown.


5	300		2	275		250	
0	X	У	X	У	X	У	
	0.10	0.07	0.10	0.06	0.10	0.06	
	0.20	0.11	0.20	0.10	0.20	0.09	
	0.30	0.16	0.30	0.15	0.30	0.13	
	0.40	0.20	0.40	0.19	0.40	0.16	
	0.50	0.25	0.50	0.23	0.50	0.20	
	0.60	0.29	0.60	0.27	0.60	0.24	
	0.67	0.32	0.69	0.30	0.70	0.27	
	0.70	0.29	0.70	0.29	0.72	0.27	
	0.80	0.19	0.80	0.19	0.80	0.19	
	0.90	0.09	0.90	0.09	0.90	0.09	

Tutorial

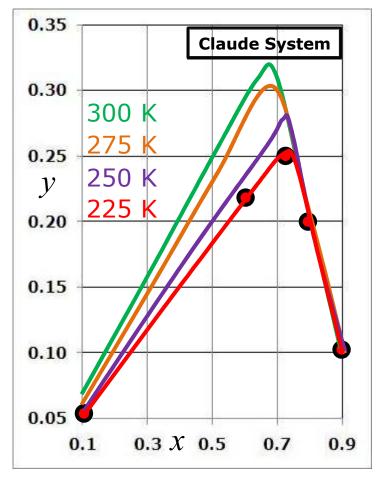
- All the calculations pertaining to part **B** are left as an exercise.
- The results for these calculations are as shown.


S	3	00	2	75	2	250
to	X	W/mf	X	W/m_{f}	X	W/m_{f}
	0.10	4671.8	0.10	4955.4	0.10	5505.3
	0.20	2598.0	0.20	2800.1	0.20	3204.2
	0.30	1722.4	0.30	1876.3	0.30	2188.4
	0.40	1239.3	0.40	1363.1	0.40	1616.1
	0.50	933.1	0.50	1036.6	0.50	1248.9
•	0.60	721.7	0.60	810.5	0.60	993.4
S	0.67	608.8	0.69	659.3	0.70	805.2
3	0.70	656.9		693.1		
	0.80	900.0	0.80	963.2	0.80	1068.4
	0.90	1683.3	0.90	1833.3	0.90	2083.3

Tutorial

- **Liquid yield v/s. x** \cdot The plot for **y** versus **x** for all other values of T_3 is as shown.
 - As mentioned earlier, y crosses a maxima with the increase in the value of \mathbf{x} for each of the **T**₃.
 - Also, the position of this maxima shifts to the right with the decrease in the value of **T**₃.

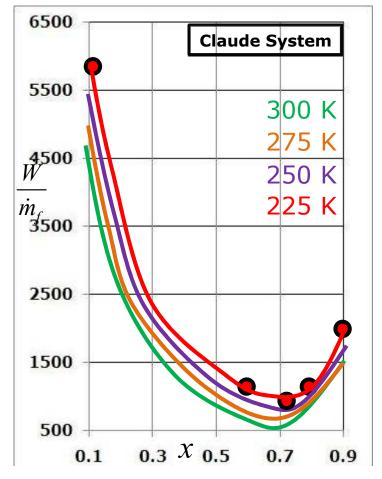
Tutorial


- **Liquid yield v/s.x** This occurs because the expander work (**h₃-h_e**) decreases with the decrease in **T**₃.
 - Also at the lower values of T_{3} , more amount of the gas can be diverted to the expander engine.

34

 This is because the product **x(h₃-h_e)** is maximized.

Tutorial


 \bullet

Liquid yield v/s. x • However, T_3 is limited by the position of the point **e** on the T – s diagram.

Tutorial

• W/m_f v/s. x

- The plot for W/m_f versus
 x for all other values of
 T₃ is as shown.
- As stated earlier, the W/m_f crosses a minima with the increase in the x, for each of the T₃.
- Also, the position of this minima shifts to the right with the decrease in the value of T₃.

Tutorial

- $W/m_f v/s.x$ 6500 **Claude System** 5500 300 K 275 K 4500 W 250 K m_r 3500 225 K 2500 1500 500 0.3 X 0.5 0.7 0.1 0.9
- The minima shifts to the right because the expander work (h₃-h_e) decreases with the decrease in T₃.
- Also, at the lower values of T₃, more amount of the gas can be diverted so that the product x(h₃h_e) is maximized.

Summary

- The J T expansion is an irreversible isenthalpic expansion and an expansion by an expansion engine is an reversible isentropic process.
- In a Claude System, the energy content of the gas is removed by allowing it to undergo an isentropic expansion.
- The yield & work requirement of the system are

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right) - \frac{W_{net}}{\dot{m}} = \begin{cases} \left(T_1 \left(s_1 - s_2\right) - \left(h_1 - h_2\right)\right) \\ -x \left(h_3 - h_e\right) \end{cases}$$

Summary

If T₁, T₂, T₃ of the system are held constant, the yield y of the system is a linear function of expander mass flow ratio x.

- The equation of y is valid only when x+y<1.
 Beyond a certain value of x, a limiting value of y is estimated as y<1-x.
- For a given value of T₃, the yield y crosses a maxima with the increase in the value of x.
- Also, the maxima shifts to the right with the decrease in the value of T₃.

Summary

- For a given value of T₃, the W/m_f of the system goes through a minima with the increase in the x.
- Also, the position of this minima shifts to the right with the decrease in the value of T₃.

Assignment

- A. Determine W/m_f for a Claude Cycle with N₂ as working fluid. The system operates between 1.013 bar (1 atm) and 50.56 bar (50 atm). The expander inlet T_3 is at 250 K. The expander flow ratio is varied between 0.1 and 0.9.
- B. Repeat the above problem for $T_3 = 300$ K, 275 K and 250 K. Plot the data y, W/m_f versus xgraphically and comment on the results.

Assignment

Answers

3	00	2	275		50
X	У	X	У	X	У
0.10	0.07	0.10	0.06	0.10	0.06
0.20	0.12	0.20	0.11	0.20	0.10
0.30	0.16	0.30	0.15	0.30	0.14
0.40	0.21	0.40	0.19	0.40	0.17
0.50	0.26	0.50	0.23	0.50	0.21
0.60	0.31	0.60	0.27	0.60	0.25
0.66	0.33	0.68	0.31	0.70	0.29
0.70	0.29	0.70	0.29	0.72	0.27
0.80	0.19	0.80	0.19	0.80	0.19
0.90	0.09	0.90	0.09	0.90	0.09

Assignment

Answers

3	800	2	275		250
	W/mf		W/m _f		
0.10	4666.1	0.10	5229.3	0.10	5605.3
0.20	2618.5	0.20	2956.9	0.20	3230.1
0.30	1744.2	0.30	1986.1	0.30	2195.9
0.40	1259.3	0.40	1447.5	0.40	1617.1
0.50	951.1	0.50	1105.1	0.50	1247.2
0.60	737.8		868.2		
0.67	632.6	0.69	719.5	0.70	801.7
0.70	707.6	0.70	758.3	0.72	846.2
0.80	972.6	0.80	1061.1	0.80	1132.6
0.90	1826.7	0.90	2036.7	0.90	2206.7

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay