Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No - 16

 Q_{R}

m

'n

9

g

Earlier Lecture

by

 In the earlier lecture, we have seen a Claude system, in which the energy content in the gas is removed by allowing it to do some work in an expansion device. y and W/m are given

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

$$-\frac{W_{net}}{\dot{m}} = \begin{cases} \left(T_1(s_1 - s_2) - (h_1 - h_2)\right) \\ -x(h_3 - h_e) \end{cases}$$

Earlier Lecture

Liquid yield v/s. x • In a reversible Claude system, if T_1 , T_2 , T_3 are held constant

- The yield **y** goes through a maxima with the increase in the value of **x**.
- Also, this maxima shifts to the right and decreases with the decrease in T_3 .

Earlier Lecture

• W/m_f v/s. x

- In a reversible Claude system, if T₁, T₂, T₃ are held constant
 - W/m_f of the system goes through a minima with an increase in x.
 - Also, the position of the minima shifts to the right and increases with the decrease in the value of T₃.

Outline of the Lecture

Topic : Gas Liquefaction and Refrigeration Systems (contd)

- Claude System with irreversibilities in Compressor and Expander
- Kapitza System
- Heylandt System
- Collins System
 - Liquid yield
 - Work requirement

Introduction

- The compression and expansion processes in an actual Claude cycle are irreversible.
- These irreversibilities cause inefficiencies and deteriorate the performance of the system.
- To study the effect of these inefficiencies, a tutorial problem is solved.
- The results are graphically plotted and compared with a reversible system solved in the previous lecture.

Claude System

F

The T – s diagram for a reversible Claude system is as shown.

- The compressor
 irreversibility is shown
 by the process 1 → 2′.
- Similarly, the expander
 irreversibility is denoted
 by the process 3 → e'.

Claude System

- The compressor inefficiency is due to both frictional losses ($\eta_{mech,c}$) and non isothermal process ($\eta_{iso,c}$).
- The net irreversibility is given by $\eta_{oval,c} = \eta_{mech,c} \times \eta_{iso,c}$
- Similarly, the expander inefficiency is due to both frictional losses ($\eta_{mech,e}$) and non isentropic process ($\eta_{ad,e}$).
- The net irreversibility is given by $\eta_{oval,e} = \eta_{mech,e} \times \eta_{ad,e}$

Claude System

- With these inefficiencies taken into account, the yield of the system decreases and the work requirement increases.
- The yield and work requirement of the system are given by

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x\left(\eta_{ad,e}\right) \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

$$-\frac{W_{net}}{\dot{m}} = \frac{\left(T_1\left(s_1 - s_2\right) - \left(h_1 - h_2\right)\right)}{\eta_{oval,c}} - x(\eta_{oval,e})(h_3 - h_e)$$

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

A. Determine W/m_f for a Claude Cycle with N₂ as working fluid. The system operates between 1.013 bar (1 atm) and 50.65 bar (50 atm). The expander inlet T₃ is at 250 K. The expander flow ratio is varied between 0.1 and 0.9. The efficiencies are as given below.

Comp.
$$\eta_{oval,c} = 0.75$$

Expd. $\eta_{mech,e} = 0.86$
 $\eta_{ad,e} = 0.86$

B. Repeat the above problem for T₃ = 300 K, 275 K and 250 K. Plot the data y, W/m_f versus x graphically and comment on the results.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

Given

Cycle : Claude System Working Pressure : 1 atm \rightarrow 50 atm Working Fluid : Nitrogen T₃ : 300 K, 275 K, 250 K Mass flow ratio : x = 0.1 \rightarrow 0.9 Efficiencies : $\eta_{oval,c} = 0.75$, $\eta_{mech,e} = 0.86$, $\eta_{ad,e} = 0.86$

For above System, Calculate

1 Work/unit mass of gas liquefied

N_2	Point 3
	300 K
	275 K
	250 K

Methodology

- In the earlier lecture, an assignment problem on a reversible Claude cycle with the answers was given.
- As stated earlier, the same problem is taken up and the effects of inefficiencies of the compressor and the expander are studied.
- All the calculations are left as an exercise for the students and the final results are graphically plotted.

Tutorial

Liquid yield v/s. x • The plot for y v/s x for a T₃= 300 and 275 K is shown.

- It is clear that maximum yield of the system decreases due to the irreversibility.
- The % decrease in the **y**_{max} is 10% and 9% for 300 and 275 K respectively.

Tutorial

- W/m_f v/s. x 8000 Claude System N_2 , 50 atm 7250 $\eta_{oval,c} = 0.75$ 6500 mech.e $\eta_{ad.e} = 0.86$ 5750 W $\eta_{_{oval}, c}$ \dot{m}_{f} $\eta_{_{mech,e}}$ \boldsymbol{n} 4250 3500 300 K 2750 2000 1250 500 0.3 X 0.5 0.1 0.7 0.9
- The plot for W/m_f v/s x for a T₃= 300 and 275
 K is shown.
- It is clear that minimum work requirement of the system increases due to the irreversibility.
- The % increase in the W/m_{fmin} is 89% and 87% for 300 and 275 K respectively.

Kapitza & Heylandt System

- The transportation of gases across the world is done in liquid state by storing them at cryogenic temperatures.
- The air liquefaction is of primary importance because LN₂ and LOX are separated from LAir.
- Kapitza and Heylandt systems are the two different modifications of the Claude System which are generally used in the air liquefaction.
- Collins system, also a modification of Claude system, is widely used in liquefaction of Helium.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Kapitza System

- A Kapitza system is a low pressure system which is used in Air liquefaction.
 - It was invented in 1939 by Pyotr Kapitza, in which
 - The first heat exchanger is replaced by a set of valved regenerators.

• The third heat exchanger is eliminated in the Claude system.

Kapitza System

- The regenerator/heat exchanger performs two different operations
 - Gas cooling/warming
 - Gas purification
 - During one cycle, one unit purifies by freezing the impurities and cools the incoming hot gas.

Kapitza System

- While the other unit warms the outgoing gas and simultaneously removes the frozen impurities by evaporation.
- The valve mechanism is used to periodically change over from one unit to another (not shown in the figure).

Kapitza System

- This periodic alternation of units along with the counter – blow arrangement ensures a continuous performance.
- This system was the first one to use a turbo – expander (rotary type) instead of a reciprocating expander.
- This modification allowed the elimination of third heat exchanger in Claude system.

Kapitza System

 The yield and work requirement of the system are given by the following equations.

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

$$-\frac{W_{net}}{\dot{m}} = \begin{cases} \left(T_1(s_1 - s_2) - (h_1 - h_2)\right) \\ -x(h_3 - h_e) \end{cases}$$

• Where, the expander mass flow ratio is denoted by **x**.

Heylandt System

- Heylandt System is a high pressure system, which is used in Air liquefaction.
- The typical operating pressure is around 200 atm.
- In 1949, Heylandt observed that, when a Claude system operated on Air with 200 atm and x=0.6, the optimum value of T₃ before the expansion engine is close to ambient.

Heylandt System

- He then eliminated the first heat exchanger.
- This modified system is called as Heylandt system.
- In this system, the inlet to the expander is at ambient and hence, the lubrication on the high pressure side and the operation of the expander are greatly simplified.

Heylandt System

 The yield and work requirement of the system are given by the following equations.

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x \left(\frac{h_3 - h_e}{h_1 - h_f}\right)$$

23

$$-\frac{W_{net}}{\dot{m}} = \begin{cases} \left(T_1(s_1 - s_2) - (h_1 - h_2)\right) \\ -x(h_3 - h_e) \end{cases}$$

• Where, the expander mass flow ratio is denoted by **x**.

Collins System

- The schematic of the Collins System is as shown.
 - It was invented in the year 1946 by Samuel C. Collins at MIT, USA.
 - This system is considered as one of the biggest milestones in Cryogenic Engineering.

Collins System

- This system is an extension to the Claude System.
 - The system has a compressor, a J – T expansion device, a make up gas connection, five 2 – fluid heat exchangers and two turbo – expanders.
- Depending on the helium inlet pressure, two to six expansion devices are used.

Collins System

- Expansion engines are used to remove the heat from the gas and thereby to reach lower and lower temperatures.
 - The inversion temperature of Helium is around 45 K and in order to have a yield, **T₇** should be less than 7.5 K.
- Depending upon the mass flow rates, two to six expanders are used.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Collins System

• Consider a control volume as shown in the figure.

IN	OUT
m @ 2	W _{e1}
	W_{e2}
	m – m _f @ 1
	m _f @ f

• Applying 1st Law, we have

 $E_{in} = E_{out}$

$$\dot{m}h_2 = W_{e1} + W_{e2} + (\dot{m} - \dot{m}_f)h_1 + \dot{m}_fh_f$$

Collins System

 Let the work done by each of the expander be

$$W_{e1} = \dot{m}_{e1} \left(\Delta h_1 \right) \qquad W_{e2} = \dot{m}_{e2} \left(\Delta h_2 \right)$$

- Δh_1 and Δh_2 are the enthalpy drops across the expander **1** and **2** respectively.
- Substituting, we get

$$\dot{m}h_{2} = \begin{cases} \dot{m}_{e1} \left(\Delta h_{1} \right) + \dot{m}_{e2} \left(\Delta h_{2} \right) \\ + \left(\dot{m} - \dot{m}_{f} \right) h_{1} + \dot{m}_{f} h_{f} \end{cases}$$

Collins System

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x_1 \left(\frac{h_3 - h_{e_1}}{h_1 - h_f}\right) + x_2 \left(\frac{h_5 - h_{e_2}}{h_1 - h_f}\right)$$

- For a given initial and final conditions of \mathbf{p} , the yield \mathbf{y} depends on $\mathbf{h}_3(\mathbf{T}_3)$, $\mathbf{h}_5(\mathbf{T}_5)$, \mathbf{x}_1 and \mathbf{x}_2 .
- Like in the Claude system, the values of T₃, T₅, x₁ and x₂ have to optimized to obtain a maximum yield.

Collins System

As stated earlier, using a control volume, 1st and 2nd
 Laws for a compressor, we get

$$-W_{c} = \dot{m} \left(T_{1} \left(s_{1} - s_{2} \right) - \left(h_{1} - h_{2} \right) \right)$$

Similarly, the control volume for an expansion engines, we

get
$$W_{e1} = \dot{m}_{e1} \left(\Delta h_1 \right)$$
 $W_{e2} = \dot{m}_{e2} \left(\Delta h_2 \right)$

• The net work done is given by

$$\therefore \quad \frac{-W_{net}}{\dot{m}} = -\frac{W_c}{\dot{m}} - \frac{W_{e1}}{\dot{m}} - \frac{W_{e2}}{\dot{m}}$$

Collins System

• Substituting, we have

$$\frac{-W_{net}}{\dot{m}} = \begin{cases} \left(T_1 \left(s_1 - s_2 \right) - \left(h_1 - h_2 \right) \right) \\ -x_1 \left[\Delta h_1 \right) - x_2 \left[\Delta h_2 \right] \end{cases} \\ x_1 = \dot{m}_{e1} / \dot{m} \quad x_2 = \dot{m}_{e2} / \dot{m} \end{cases}$$

- The 1st term is the work requirement for a simple L – H system.
- The 2nd term is the reduction in work requirement occurring due to the modification.

Tutorial

Determine y, W/m_f, FOM for a Collins System with Helium as working fluid. The system operates between 1.013 bar (1 atm) and 15.19 bar (15 atm). The expander flow ratios are x₁=0.6, x₂=0.2 respectively. The expander inlet conditions are as mentioned below.

Exp. Inlet Cond.						
1	60 K, 15 atm					
11	15 K, 15 atm					

Tutorial

Given

Cycle : Collins System Working Pressure : 1 atm \rightarrow 15 atm Working Fluid : Helium Expander 1: 15 atm, 60 K, x₁=0.4 Expander 2: 15 atm, 15 K, x₂=0.2

For above System, Calculate

1 Work/unit mass of gas liquefied

2 FOM

Tutorial

Liquid yield

(1587 - 9.5)

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x_1 \left(\frac{h_3 - h_{e_1}}{h_1 - h_f}\right) + x_2 \left(\frac{h_5 - h_{e_2}}{h_1 - h_f}\right)$$

	1	2	3	5	e ₁	e ₂	f		
р	1.013	15.19	15.19	15.19	1.013	1.013	1.01		
Т	300	300	60	15	22	4.8	4.2		
h	1587	1570	328	81	130.0	38	9.5		
S	31.5	25.6	17.5	9.25	17.5	9.25	3.4		
<i>y</i> =	$y = \frac{(1587 - 1570)}{(1587 - 1570)} + 0.4 \frac{(328 - 130.0)}{(1587 - 10.0)} + 0.2 \frac{(81 - 38)}{(1587 - 10.0)} = 0.066$								

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

(1587 - 9.5)

(1587 - 9.5)

Tutorial

Work/unit mass of He compressed

$$\frac{-W_{net}}{\dot{m}} = \left(T_1\left(s_1 - s_2\right) - \left(h_1 - h_2\right)\right) - x_1\left(h_3 - h_{e1}\right) - x_2\left(h_5 - h_{e2}\right)$$

	1	2	3	5	e ₁	e ₂	f	
р	1.013	15.19	15.19	15.19	1.013	1.013	1.01	
Т	300	300	60	15	22	4.8	4.2	
h	1587	1570	328	81	130.0	38	9.5	
S	31.5	25.6	17.5	9.25	17.5	9.25	3.4	
_	$-\frac{W_{net}}{\dot{m}} = \begin{cases} 300(31.5 - 25.6) - (1587 - 1570) \\ -0.4(328 - 130.0) - 0.2(81 - 38) \end{cases} = 1665.2 J / g$							

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Tutorial

Work/unit mass of He liquefied

Figure of Merit (FOM)

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Summary

- The compression and expansion processes in an actual Claude cycle are irreversible. These cause inefficiencies and deteriorate the performance of the system.
- Kapitza and Heylandt systems are the two modifications of the Claude System.
- In a Kapitza cycle, the regenerator/heat exchanger performs both gas cooling/warming and gas purification.

Summary

- Also, it was first system to use a turbo –expander (rotary type) instead of a reciprocating expander.
- Heylandt System is a high pressure system, which is used in Air liquefaction (~200 atm).
- In this system, the inlet to the expander is ambient and hence, the lubrication on the high pressure side and the operation of the expander is greatly simplified.

Summary

- The Collins system is an extension to the Claude System and depending on the helium inlet pressure, two to six expansion devices are used.
- The yield and work requirement are given by

$$y = \left(\frac{h_1 - h_2}{h_1 - h_f}\right) + x_1 \left(\frac{h_3 - h_{e_1}}{h_1 - h_f}\right) + x_2 \left(\frac{h_5 - h_{e_2}}{h_1 - h_f}\right)$$

$$\frac{-W_{net}}{\dot{m}} = \left(T_1\left(s_1 - s_2\right) - \left(h_1 - h_2\right)\right) - x_1\left(h_3 - h_{e1}\right) - x_2\left(h_5 - h_{e2}\right)$$

- A self assessment exercise is given after this slide.
- Kindly asses yourself for this lecture.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Self Assessment

In a reversible Claude system, if T₁, T₂, T₃ are held constant,

- 1. The y_{max} _____ with the decrease in T_3 .
- 2. W/m_{fmin} _____ with the decrease in T_3 .
- 3. The overall inefficiency of compressor is _____
- 4. The overall inefficiency of an expander is _____
- 5. Kapitza and Heylandt systems are the modifications of the _____ System.
- 6. _____ system is widely used in helium liquefaction.
- 7. The regenerator/heat exchanger performs both _____& ____.

Self Assessment

- 8. _____ system was the first one to use a turbo expander.
- 9. _____ system is a high pressure Air liquefaction system.
- 10. In a Heylandt system, the inlet to the expander is at _____.
- 11. _____ system is considered as one of the biggest milestones in Cryogenic Engineering.
- 12. The inversion temperature of Helium is around

Answers

- 1. Decreases
- 2. Increases

3.
$$\eta_{oval,c} = \eta_{mech,c} \times \eta_{iso,c}$$

4. $\eta_{oval,e} = \eta_{mech,e} \times \eta_{ad,e}$

- 5. Claude
- 6. Collins
- 7. Gas cooling/warming, Gas purification
- 8. Kapitza
- 9. Heylandt

Answers

- 10. Ambient
- 11. Collins
- 12. 45 K

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay