#### Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No - 21

# **Earlier Lecture**

According to Gibbs Phase Rule

F = C - P + 2

- Temperature composition diagram is the variation of the mole fraction (y) with the temperature (T) at a constant pressure (p).
- When a mixture condenses or boils, there is a change in temperature (non – isothermal process).
- Repeated rectification of a mixture enriches the liquid and vapor phases with high and low boiling components respectively.

# Introduction

- In the earlier lecture, we have seen the temperature composition diagrams and an introduction to the rectification process.
- These diagrams form the basis for the rectification process.
- The molar concentrations of vapor and liquid phases of a two component two phase mixture change with temperature.
- Hence, there is a need to study various laws governing the properties of the mixtures.
   Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

# **Outline of the Lecture**

#### **Topic : Gas Separation (contd)**

- Dalton's Law of Partial Pressures
- Raoult's Law
- Gibbs Dalton's Law
- Distribution Coefficient
- Tutorials

# **Dalton's Law**

- The Dalton's Law was formulated by an English chemist, John Dalton in the year 1801 for gas mixtures.
- It relates the partial pressure of an individual component of the mixture
  - To the total pressure of the mixture.
  - To its mole fraction.
- It is applicable only to the non reacting, ideal gas mixtures.

## **Dalton's Law**



- Consider a mixture of two non – reacting, ideal gases (Gas A and Gas B) at a temperature T as shown.
- Let the total pressure of the mixture be p<sub>tot</sub> and partial pressures of Gas A and Gas B be p<sub>A</sub> and p<sub>B</sub> respectively.
- Also, y<sub>A</sub> and y<sub>B</sub> are the mole fractions of Gas A and Gas B respectively.

## **Dalton's Law**



- By Dalton's law, total pressure of the mixture is equal to the sum of the partial pressures of the individual components.
- Mathematically,

$$p_{tot} = p_A + p_B$$

 Also, the partial pressure of each component is directly proportional to its mole fraction.

$$p_A = p_{tot} y_A$$
  $p_B = p_{tot} y_B$ 

# **Dalton's Law**



- Extending it to the mixture with **N** components, we have the following.



 Partial pressure of the j<sup>th</sup> component is

$$p_j = p_{tot} y_j$$

• where  $\mathbf{y}_{\mathbf{i}}$  is the mole fraction of **j**<sup>th</sup> component.

## **Raoult's Law**



- Consider a 1 component, two phase system in thermodynamic equilibrium as shown in the figure.
- The vapor above the liquid phase exerts a pressure called as vapor pressure.
- It is dependent only on the temperature of the system.



## **Raoult's Law**

- Similarly, consider a 2 component, two phase mixture in thermal equilibrium as shown.
- The components are assumed to be ideal (no inter – molecular forces) and chemically non – reacting.



- Such a mixture is called as a ideal mixture or a prefect mixture.
- It is clear that the vapor above the liquid has both the components.

## **Raoult's Law**

- Raoult's law was formulated by a French chemist, François-Marie Raoult in the year 1882.
- Consider a perfect mixture of Gas A and Gas B in thermodynamic equilibrium at T. Let Gas A has following parameters.
  - **p**<sub>A</sub> Partial pressure
  - **x**<sub>A</sub> Mole fraction in liquid phase
  - **y**<sub>A</sub> Mole fraction in vapor phase

11

**n**<sub>A</sub> Vapor pressure at temp. **T** 

# **Raoult's Law**



- It states that the partial pressure of a component in the vapor phase is directly proportional to the mole fraction of that component in the liquid phase.
- Mathematically, p = f(x)
- Therefore for Gas A,

$$p_A = \pi_A x_A$$

- Similarly for Gas B,
- $p_B = \pi_B x_B$

# **Raoult's Law**



- Extending it to the mixture with N components, we have the following.
- Partial pressure of the  $j^{th}$ component is  $p_i = \pi_i x_i$ 
  - where x<sub>j</sub> is the mole fraction of j<sup>th</sup> component.
  - Π<sub>j</sub> is the vapor pressure of j<sup>th</sup> component at temperature T.

# Dalton's Law + Raoult's Law



If the vapor above the liquid phase is assumed to be ideal, then combining the Dalton's and Raoult's laws, we have



# **Raoult's Law**



Extending further for the liquid phase, the following statements hold true.

$$x_A + x_B = 1 \qquad p_{tot} = \pi_A x_A + \pi_I x_B$$

$$p_{tot} = \pi_A x_A + \pi_B \left( 1 - x_A \right)$$

$$p_{tot} = \pi_A \left( 1 - x_B \right) + \pi_B x_B$$

The variation of pressure with mole fraction is as shown.

# Gibbs – Dalton's Law



- Again, assuming the vapor above the liquid to be ideal, Gibbs – Dalton's Law is the application of Dalton's Law to this vapor.
- Let p<sub>A</sub> and p<sub>tot</sub> be the partial pressure of Gas A and total pressure of mixture respectively.
- Also, let y<sub>A</sub> be the mole fraction of Gas A in the vapor phase only.

# Gibbs – Dalton's Law



- Application of Dalton's Law to the vapor above the liquid, we have the following.
- For **Gas A** in vapor phase  $P_A = P_{tot} y_A$
- Similarly for **Gas B** in the vapor phase can be written as  $p_B = p_{tot} y_B$
- Extending for a N component mixture, then for j<sup>th</sup> component,

# G – D's Law + Raoult's Law



Combining the Gibbs – Dalton and Raoult's laws to the vapor above the liquid phase, we have



# Law of Mixtures

- Dalton's Law : Relates partial pressures of non reacting ideal gases.
- **Raoult's Law** : Relates the vapor pressure with the liquid mole fraction of a component.
- **Gibbs Dalton's Law** : Application of Dalton's law to the vapor above the liquid phase.
- Raoult's Law and Gibbs Dalton's Law together establish a relation between the vapor and liquid fractions of any component.

# **Distribution Coefficient**

As derived earlier, consider the equation between y<sub>A</sub> and x<sub>A</sub> for the Gas A.

• Rearranging, we have



- The ratio of  $y_A$  to  $x_A$  is called as **Distribution Coefficient** and is denoted by a constant  $K_A$ .
- It is the ratio of mole fractions of a component (say Gas A), in vapor to liquid phases in a mixture at given temperature.

# **Distribution Coefficient**

 Extending the definition to the j<sup>th</sup> component of a N component mixture, we have

$$K_{j} = \frac{y_{j}}{x_{j}} = \frac{\pi_{j}}{p_{tot}}$$
$$y_{j} = K_{j}x_{j}$$

- The distribution coefficient (**K**) for an ideal or a perfect mixture is determined using the above equation.
- But for the non ideal or real mixtures, it is determined experimentally.

# **Distribution Coefficient**

For an ideal two phase mixture (Gas A and Gas B), the relation between K<sub>A</sub> and K<sub>B</sub>, and the liquid mole fractions x<sub>A</sub> and x<sub>B</sub> is as given below.

$$y_{A} = K_{A}x_{A} \quad y_{B} = K_{B}x_{B} \quad y_{A} + y_{B} = 1$$

$$K_{A}x_{A} + K_{L}x_{B} = 1$$

$$K_{A}x_{A} + K_{B}(1 - x_{A}) = 1$$

$$K_{A}x_{A} + K_{B}(1 - x_{A}) = 1$$

$$K_{A}(1 - x_{B}) + K_{B}x_{B} = 1$$

$$K_{A}(1 - x_{B}) + K_{B}x_{B} = 1$$

$$K_{A}(1 - x_{B}) + K_{B}x_{B} = 1$$

# CRYOGENIC ENGINEERING Distribution Coefficient



- As mentioned earlier, K is a ratio of mole fractions of a component in vapor and liquid phases in thermodynamic equilibrium.
- It is meaningful and defined only in two phase region.
- For example, a mixture of N<sub>2</sub> and O<sub>2</sub> at 1 atm exists in two phase between 77 K and 90 K. hence, K is defined in this interval only.

# **Distribution Coefficient**



- The values of **K** are determined experimentally at some reference pressure  $(\mathbf{p}_0)$ . Usually this pressure  $(\mathbf{p}_0)$  is 1 atm.
- In the literature, the values for  $\ln \left( \frac{Kp_{mix}}{p_0} \right)$  are



given, from which the **K** values are calculated.

• Data for  $N_2$ ,  $O_2$  and Ar are given in the next slide. A tutorial has been solved on this concept.

# **Distribution Coefficient**

• The values for  $\ln(Kp_{mix}/p_0)$  **O**<sub>2</sub> and **N**<sub>2</sub> are as given below.

|    | Nitrogen (P <sub>o</sub> =1 atm) |       |       | Oxygen ( $P_0 = 1$ atm) |        |       |
|----|----------------------------------|-------|-------|-------------------------|--------|-------|
| Т  | 1 atm                            | 2 atm | 5 atm | 1 atm                   | 2 atm  | 5 atm |
| 78 | 0.080                            | •••   | •••   | -1.337                  | •••    | •••   |
| 80 | 0.304                            | •••   | •••   | -1.116                  | •••    | •••   |
| 82 | 0.528                            | •••   | •••   | -0.896                  | •••    | • • • |
| 84 | 0.758                            | 0.704 | •••   | -0.675                  | -0.457 | •••   |
| 86 | 0.977                            | 0.903 |       | -0.455                  | -0.302 | •••   |
| 88 | 1.201                            | 1.101 | •••   | -0.235                  | -0.146 | •••   |
| 90 | 1.425                            | 1.299 |       | -0.014                  | +0.009 | • • • |
| 92 | •••                              | 1.497 | •••   | •••                     | 0.165  | •••   |

# **Distribution Coefficient**

• The values for  $\ln(Kp_{mix}/p_0)$  **O**<sub>2</sub> and **N**<sub>2</sub> are as given below.

|     | Nitrogen (P <sub>o</sub> =1 atm) |       |       | Oxygen (P <sub>o</sub> =1 atm) |       |       |
|-----|----------------------------------|-------|-------|--------------------------------|-------|-------|
| Т   | 1 atm                            | 2 atm | 5 atm | 1 atm                          | 2 atm | 5 atm |
| 94  | • • •                            | 1.696 | 1.550 | • • •                          | 0.321 | 0.661 |
| 96  | • • •                            | 1.894 | 1.702 | • • •                          | 0.477 | 0.788 |
| 98  | • • •                            | •••   | 1.853 | • • •                          | • • • | 0.915 |
| 100 | • • •                            | •••   | 2.004 | • • •                          | • • • | 1.042 |
| 102 | • • •                            |       | 2.156 | • • •                          | •••   | 1.169 |
| 104 | • • •                            | •••   | 2.307 | • • •                          | •••   | 1.296 |
| 106 | • • •                            |       | 2.459 | • • •                          | •••   | 1.423 |
| 108 |                                  |       | 2.610 |                                |       | 1.551 |

# **Distribution Coefficient**

• The values for  $\ln(Kp_{mix}/p_0)$  **Ar** are as given below.

|    | Argon ( $P_0 = 1$ atm) |        |       | Argon ( $P_0 = 1$ atm) |   |       |       |
|----|------------------------|--------|-------|------------------------|---|-------|-------|
| Т  | 1 atm                  | 2 atm  | 5     | Т                      | 1 | 2 atm | 5 atm |
| 78 | -0.907                 |        | • • • | 94                     |   | 0.648 | 0.552 |
| 80 | -0.716                 | •••    | •••   | 96                     |   | 0.828 | 0.732 |
| 82 | -0.524                 |        | • • • | 98                     |   |       | 0.863 |
| 84 | -0.332                 | -0.252 | •••   | 100                    |   | •••   | 1.043 |
| 86 | -0.140                 | -0.072 | •••   | 102                    |   | •••   | 1.224 |
| 88 | -0.052                 | +0.108 | •••   | 104                    |   | •••   | 1.405 |
| 90 | +0.140                 | 0.288  | • • • | 106                    |   |       | 1.585 |
| 92 |                        | 0.468  | •••   | 108                    |   |       | 1.766 |

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

# **Distribution Coefficient**



- The variation of **K** with **T**, for  $N_2 - O_2$  mixture at 1 and 2 atm is as shown.
- The **K** decreases with the decrease in the temperature for any given pressure.
- The component with lower boiling point (here, N<sub>2</sub>) has higher K at any given T and p.

# **Distribution Coefficient**



For any component, the value of K approaches to 1 at its boiling point.

- Also, the value of K is less than 1 when the temperature is below the boiling point of the component.
- When K is less than 1, the Ln(K) is negative.

# Tutorial – 1

- Consider a mixture of N<sub>2</sub> and O<sub>2</sub> at 5 atm and temperature of 100 K.
- Calculate the distribution coefficients for N<sub>2</sub> and O<sub>2</sub>. Also, calculate the vapor and liquid compositions using the obtained K values.
- Use the data from the tables given in the earlier slides.

# Tutorial – 1

#### Given

Working Pressure : 5 atm

Temperature : 100 K

Mixture :  $N_2 + O_2$ 

#### For above mixture, Calculate

- K<sub>N2</sub> Distribution coefficient of N<sub>2</sub>
   K<sub>02</sub> Distribution coefficient of O<sub>2</sub>
- $\mathbf{x_{N2}}$  Mole fraction of  $\mathbf{N_2}$  in liquid phase
- $x_{02}$  Mole fraction of  $O_2$  in liquid phase
- $y_{N2}$  Mole fraction of  $N_2$  in vapor phase
- $y_{02}$  Mole fraction of  $O_2$  in vapor phase

## Tutorial – 1



|     | $N_2$ |
|-----|-------|
| Т   | 5 atm |
| 94  | 1.550 |
| 96  | 1.702 |
| 98  | 1.853 |
| 100 | 2.004 |
| 102 | 2.156 |
| 104 | 2.307 |
| 106 | 2.459 |
| 108 | 2.610 |
|     |       |

## Tutorial – 1



|     | 0,    |
|-----|-------|
| Т   | 5 atm |
| 94  | 0.661 |
| 96  | 0.788 |
| 98  | 0.915 |
| 100 | 1.042 |
| 102 | 1.169 |
| 104 | 1.296 |
| 106 | 1.423 |
| 108 | 1.551 |
|     |       |

## Tutorial – 1

• X<sub>N2</sub>



## Tutorial – 1



## Tutorial – 1

#### • y<sub>N2</sub>

$$y_{N2} = K_{N2} x_{N2}$$
  
 $K_{N2} = 1.483$   $x_{N2} = 0.472$ 

$$y_{N2} = (1.483)(0.472) = 0.699$$

## Tutorial – 1



# Tutorial – 2

- Consider a two phase mixture of N<sub>2</sub> and O<sub>2</sub> at a pressure of 2 atm. Use the T s diagrams for the vapor pressures of N<sub>2</sub> and O<sub>2</sub> at 86 K.
- Determine the liquid and vapor composition of the mixture if the temperature of the mixture is 86 K.
- Also, calculate  $K_{N2}$  and  $K_{O2}$  and compare them with the experimental data.

# Tutorial – 2

#### Given

Working Pressure : 2 atm

Temperature : 86 K

Mixture :  $N_2 + O_2$ 

#### For above mixture, Calculate

| X <sub>N2</sub>        | Mole fraction of N <sub>2</sub> in liquid phase |
|------------------------|-------------------------------------------------|
| <b>X</b> <sub>O2</sub> | Mole fraction of $O_2$ in liquid phase          |
| $\mathbf{y}_{N2}$      | Mole fraction of $N_2$ in vapor phase           |
| <b>Y</b> <sub>02</sub> | Mole fraction of $O_2$ in vapor phase           |
| K <sub>N2</sub>        | Distribution coefficient of $N_2$               |
| $K_{02}$               | Distribution coefficient of $\mathbf{O}_2$      |

# Tutorial – 2



- Vapor pressures of N<sub>2</sub> is taken from the T – s diagram.
- Following the similar procedure for O<sub>2</sub>, we have the vapor pressures as

**Vapor Pr.**  $\Pi_{N2} = 2.517 \text{ atm}$  $\Pi_{O2} = 0.640 \text{ atm}$ 

# Tutorial – 2

• X<sub>N2</sub>

$$p_{tot} = \pi_{N2} x_{N2} + \pi_{O2} \left( 1 - x_{N2} \right)$$
$$x_{N2} = \frac{p_{tot} - \pi_{O2}}{\pi_{N2} - \pi_{O2}}$$

#### Data

$$p_{tot} = 2 \text{ atm}$$
  
 $\Pi_{N2} = 2.517 \text{ atm at 86 K}$   
 $\Pi_{O2} = 0.640 \text{ atm at 86 K}$ 

$$x_{N2} = \frac{2 - 0.980}{3.550 - 0.980} = 0.724$$

## Tutorial – 2



# Tutorial – 2



## Tutorial – 2



## Tutorial – 2





## Tutorial – 2



# Tutorial – 2

• The calculated and experimental **K** values are as tabulated below.

| Calcul          | ated   | Experimental    |        |  |
|-----------------|--------|-----------------|--------|--|
| K <sub>N2</sub> | 1.2583 | K <sub>N2</sub> | 1.2335 |  |
| K <sub>02</sub> | 0.3224 | K <sub>O2</sub> | 0.3697 |  |

- The ideal (calculated) values differed from the experimental values by small amount.
- This is because, the effect of inter molecular forces is neglected in the ideal mixtures.

# Summary

- Dalton's Law relates partial pressures of non reacting ideal gases.
- Raoult's Law relates the vapor pressure with the liquid mole fraction of a component in a mixture.
- Gibbs Dalton's Law is an application of Dalton's law to the vapor above the liquid phase.
- Distribution Coefficient (K) is the ratio of mole fractions of a component in vapor to liquid phases. It is meaningful and defined only in two phase region of a mixture.

# Assignment

- Consider a two phase mixture of N<sub>2</sub> and O<sub>2</sub> at a pressure of 1 atm. Determine the liquid and vapor composition of the mixture if the temperature of the mixture is 80 K.
- The vapor pressures of N<sub>2</sub> and O<sub>2</sub> at 80 K are as given below.

| Data                               |  |  |  |
|------------------------------------|--|--|--|
| <b>n</b> <sub>N2</sub> = 1.349 atm |  |  |  |
| <b>n</b> <sub>02</sub> = 0.297 atm |  |  |  |

### **Answers**

| 1 atm                  | 80 K  |
|------------------------|-------|
| X <sub>N2</sub>        | 0.654 |
| X <sub>O2</sub>        | 0.346 |
| y <sub>N2</sub>        | 0.887 |
| <b>y</b> <sub>02</sub> | 0.113 |



### **Thank You!**

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay