Prof. Millind D. Atrey

Department of Mechanical Engineering, **IIT Bombay**

Lecture No. 21

Earlier Lecture

• According to Gibbs Phase Rule

 $F = C - P + 2$

- Temperature composition diagram is the variation of the mole fraction (**y**) with the temperature (**T**) at a constant pressure (**p**).
- When a mixture condenses or boils, there is a change in temperature (non – isothermal process).
- Repeated rectification of a mixture enriches the liquid and vapor phases with high and low boiling components respectively.

Introduction

- In the earlier lecture, we have seen the temperature composition diagrams and an introduction to the rectification process.
- These diagrams form the basis for the rectification process.
- The molar concentrations of vapor and liquid phases of a two component two phase mixture change with temperature.
- ³ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay** • Hence, there is a need to study various laws governing the properties of the mixtures.

Outline of the Lecture

Topic : Gas Separation (contd)

- Dalton's Law of Partial Pressures
- Raoult's Law
- Gibbs Dalton's Law
- Distribution Coefficient
- Tutorials

Dalton's Law

- The Dalton's Law was formulated by an English chemist, John Dalton in the year 1801 for gas mixtures.
- It relates the partial pressure of an individual component of the mixture
	- To the total pressure of the mixture.
	- To its mole fraction.
- It is applicable only to the non reacting, ideal gas mixtures.

Dalton's Law

- Consider a mixture of two non – reacting, ideal gases (**Gas A** and **Gas B**) at a temperature **T** as shown.
- Let the total pressure of the mixture be p_{tot} and partial pressures of **Gas A** and **Gas B** be p_A and p_B respectively.
- Also, y_A and y_B are the mole fractions of **Gas A** and **Gas B** respectively.

Dalton's Law

- By Dalton's law, total pressure of the mixture is equal to the sum of the partial pressures of the individual components.
- Mathematically,

$$
p_{\rm tot} = p_A + p_B
$$

• Also, the partial pressure of each component is directly proportional to its mole fraction.

$$
p_A = p_{tot} y_A \qquad p_B = p_{tot} y_B
$$

Dalton's Law

- Extending it to the mixture with **N** components, we have the following.
- Total pressure

• Partial pressure of the **j th** component is

$$
p_j = p_{\text{tot}} y_j
$$

• where **y^j** is the mole fraction of **j th** component.

Raoult's Law

-
- Consider a 1 component, two phase system in thermodynamic equilibrium as shown in the figure.
- The vapor above the liquid phase exerts a pressure called as vapor pressure.
- It is dependent only on the temperature of the system.

Raoult's Law

- Similarly, consider a 2 component, two phase mixture in thermal equilibrium as shown.
- The components are assumed to be ideal (no inter – molecular forces) and chemically non – reacting.

- Such a mixture is called as a ideal mixture or a prefect mixture.
- It is clear that the vapor above the liquid has both the components.

Raoult's Law

- T
- Raoult's law was formulated by a French chemist, François-Marie Raoult in the year 1882.
- Consider a perfect mixture of **Gas A** and **Gas B** in thermodynamic equilibrium at **T**. Let **Gas A** has following parameters.
	- **p_A** Partial pressure
	- **x^A** Mole fraction in liquid phase
	- **y**^A Mole fraction in vapor phase
	- **π^A** Vapor pressure at temp. **T**

Raoult's Law

- It states that the partial pressure of a component in the vapor phase is directly proportional to the mole fraction of that component in the liquid phase.
- Mathematica

ally,
$$
p = f(x)
$$

• Therefore for **Gas A**,

$$
p_A = \pi_A x_A
$$

• Similarly for **Gas B**,

$$
p_B = \pi_B x_B
$$

Raoult's Law

- Extending it to the mixture with **N** components, we have the following.
- Partial pressure of the **j th** component is $p_i = \pi_i x_i$
	- where **x^j** is the mole fraction of **j th** component.
	- **π^j** is the vapor pressure of **j th** component at temperature **T**.

Dalton's Law + Raoult's Law

If the vapor above the liquid phase is assumed to be ideal, then combining the Dalton's and Raoult's laws, we have

Raoult's Law

Extending further for the liquid phase, the following statements hold true.

$$
x_A + x_B = 1 \qquad p_{\text{tot}} = \pi_A x_A + \pi_A x_B
$$

$$
p_{\rm tot} = \pi_A x_A + \pi_B \left(1 - x_A\right)
$$

$$
p_{\rm tot} = \pi_A \left(1 - x_B \right) + \pi_B x_B
$$

The variation of pressure with mole fraction is as shown.

Gibbs – Dalton's Law

- Again, assuming the vapor above the liquid to be ideal, Gibbs – Dalton's Law is the application of Dalton's Law to this vapor.
- Let p_A and p_{tot} be the partial pressure of **Gas A** and total pressure of mixture respectively.
- Also, let y_A be the mole fraction of **Gas A** in the vapor phase only.

Gibbs – Dalton's Law

- Application of Dalton's Law to the vapor above the liquid, we have the following.
- For Gas A in vapor phase $p_A = p_{tot} y_A$
- Similarly for **Gas B** in the vapor phase can be written as $p_B = p_{tot} y_B$
- Extending for a **N** component mixture, then for **j th** component,

G – D's Law + Raoult's Law

• Combining the Gibbs – Dalton and Raoult's laws to the vapor above the liquid phase, we have

Law of Mixtures

- **Dalton's Law** : Relates partial pressures of non reacting ideal gases.
- **Raoult's Law** : Relates the vapor pressure with the liquid mole fraction of a component.
- **Gibbs – Dalton's Law** : Application of Dalton's law to the vapor above the liquid phase.
- Raoult's Law and Gibbs Dalton's Law together establish a relation between the vapor and liquid fractions of any component.

Distribution Coefficient

• As derived earlier, consider the equation between **y^A** and **x^A** for the **Gas A**.

• Rearranging, we have

- The ratio of y_A to x_A is called as **Distribution Coefficient** and is denoted by a constant K_A .
- It is the ratio of mole fractions of a component (say **Gas A**), in vapor to liquid phases in a mixture at given temperature.

Distribution Coefficient

• Extending the definition to the **j th** component of a **N** component mixture, we have

$$
K_{j} = \frac{y_{j}}{x_{j}} = \frac{\pi_{j}}{p_{tot}}
$$

$$
y_{j} = K_{j}x_{j}
$$

- The distribution coefficient (**K**) for an ideal or a perfect mixture is determined using the above equation.
- But for the non ideal or real mixtures, it is determined experimentally.

Distribution Coefficient

• For an ideal two phase mixture (**Gas A** and **Gas B**), the relation between K_A and K_B , and the liquid mole fractions x_A and x_B is as given below.

$$
y_{A} = K_{A}x_{A} \t y_{B} = K_{B}x_{B} \t y_{A} + y_{B} = 1
$$

$$
K_{A}x_{A} + K_{B}x_{B} = 1
$$

$$
X_{A} + x_{B} = 1
$$

$$
K_{A}x_{A} + K_{B}(1 - x_{A}) = 1
$$

$$
X_{A} = \frac{1 - K_{B}}{K_{A} - K_{B}} \t x_{B} = \frac{1 - K_{A}}{K_{B} - K_{A}}
$$

Distribution Coefficient

- As mentioned earlier, **K** is a ratio of mole fractions of a component in vapor and liquid phases in thermodynamic equilibrium.
- It is meaningful and defined only in two phase region.
- For example, a mixture of **N**₂ and **O**₂ at 1 atm exists in two phase between 77 K and 90 K. hence, **K** is defined in this interval only.

Distribution Coefficient

- The values of **K** are determined experimentally at some reference pressure (**p⁰**). Usually this pressure (**p⁰**) is 1 atm.
- In the literature, the values for $\left| \ln \right| \frac{K p_{\textit{mix}}}{2} \right|$ are

given, from which the **K** values are calculated.

• Data for **N²** , **O²** and **Ar** are given in the next slide. A tutorial has been solved on this concept.

Distribution Coefficient

• The values for $\ln(Kp_{mix}/p_{0})$ **O**₂ and **N**₂ are as given below.

Distribution Coefficient

• The values for $\ln(Kp_{mix}/p_{0})$ **O**₂ and **N**₂ are as given below.

Distribution Coefficient

• The values for $\ln (K p_{mix}/p_0)$ **Ar** are as given below.

Distribution Coefficient

- The variation of **K** with **T**, for $N_2 - O_2$ mixture at 1 and 2 atm is as shown.
- The **K** decreases with the decrease in the temperature for any given pressure.
- The component with lower boiling point (here, **N²**) has higher **K** at any given **T** and **p**.

Distribution Coefficient

- For any component, the value of **K** approaches to 1 at its boiling point.
- Also, the value of **K** is less than 1 when the temperature is below the boiling point of the component.
- When **K** is less than 1, the **Ln(K)** is negative.

Tutorial – 1

- Consider a mixture of **N²** and **O²** at 5 atm and temperature of 100 K.
- Calculate the distribution coefficients for **N**₂ and **O²** . Also, calculate the vapor and liquid compositions using the obtained **K** values.
- Use the data from the tables given in the earlier slides.

Tutorial – 1

Given

Working Pressure : 5 atm

Temperature : 100 K

Mixture : $N_2 + O_2$

For above mixture, Calculate

K^N₂ Distribution coefficient of N_2 **KO2** Distribution coefficient of **O² xN2** Mole fraction of **N²** in liquid phase **xO2** Mole fraction of **O²** in liquid phase **yN2** Mole fraction of **N²** in vapor phase **yO2** Mole fraction of **O²** in vapor phase

Tutorial – 1

Tutorial – 1

O²

T 5 atm

94 0.661

96 0.788

Tutorial – 1

 X_{N2}

Tutorial – 1

Tutorial – 1

y_{N2}

$$
y_{N2} = K_{N2}x_{N2}
$$

 $K_{N2} = 1.483$ $x_{N2} = 0.472$

$$
y_{N2} = (1.483)(0.472) = 0.699
$$

Tutorial – 1

Tutorial – 2

- Consider a two phase mixture of **N²** and **O²** at a pressure of 2 atm. Use the $T - s$ diagrams for the vapor pressures of **N²** and **O²** at 86 K.
- Determine the liquid and vapor composition of the mixture if the temperature of the mixture is 86 K.
- Also, calculate K_{N2} and K_{O2} and compare them with the experimental data.

Tutorial – 2

Given

Working Pressure : 2 atm

Temperature : 86 K

Mixture : $N_2 + O_2$

For above mixture, Calculate

KO2 Distribution coefficient of **O²**

Tutorial – 2

- Vapor pressures of **N²** is taken from the $T - s$ diagram.
- Following the similar procedure for **O²** , we have the vapor pressures as

Vapor Pr. $\overline{n}_{N2} = 2.517$ atm $n_{02} = 0.640$ atm

Tutorial – 2

• **xN2**

$$
p_{tot} = \pi_{N2} x_{N2} + \pi_{O2} (1 - x_{N2})
$$

$$
x_{N2} = \frac{p_{tot} - \pi_{O2}}{\pi_{N2} - \pi_{O2}}
$$

Data

$$
p_{tot} = 2 atm
$$

\n
$$
n_{N2} = 2.517 atm at 86 K
$$

\n
$$
n_{O2} = 0.640 atm at 86 K
$$

$$
x_{N2} = \frac{2 - 0.980}{3.550 - 0.980} = 0.724
$$

Tutorial – 2

Tutorial – 2

 $\frac{N2}{N}$ (2)

Tutorial – 2

Tutorial – 2

Tutorial – 2

Tutorial – 2

• The calculated and experimental **K** values are as tabulated below.

- The ideal (calculated) values differed from the experimental values by small amount.
- This is because, the effect of inter molecular forces is neglected in the ideal mixtures.

Summary

- Dalton's Law relates partial pressures of non reacting ideal gases.
- Raoult's Law relates the vapor pressure with the liquid mole fraction of a component in a mixture.
- Gibbs Dalton's Law is an application of Dalton's law to the vapor above the liquid phase.
- Distribution Coefficient (**K**) is the ratio of mole fractions of a component in vapor to liquid phases. It is meaningful and defined only in two phase region of a mixture.

Assignment

- Consider a two phase mixture of **N²** and **O²** at a pressure of 1 atm. Determine the liquid and vapor composition of the mixture if the temperature of the mixture is 80 K.
- The vapor pressures of N_2 and O_2 at 80 K are as given below.

Answers

Thank You!