Prof. Millind D. Atrey

Department of Mechanical Engineering, **IIT Bombay**

Lecture No - 23

Earlier Lecture

- Earlier, we have studied the Temperature composition diagrams, the Enthalpy composition diagrams and their importance in Gas separation.
- The separation of a mixture is more effective when the difference in the boiling points is more.
- In this column, Low and High Boiling components are collected at top and bottom respectively.
- **Murphree efficiency** is the ratio of actual change in mole fraction to the maximum possible change that can occur.

Outline of the Lecture

Topic : Gas Separation (contd)

- Understanding of Rectification Column using an Animation
- Theoretical Plate Calculations

Rectification Column

• Animation

Rectification Column

• As seen earlier in a rectification column, the liquid moving down is enriched in high boiling point component (O₂).

• On the other hand, the vapor moving up is enriched in low boiling point component (N₂).

Rectification Column

• For getting 100% pure products, infinite number of rectification processes – plates, would be required.

But in reality, the size and the cost of the column limit the number of rectification processes and hence the purity.

Rectification Column

- In the past, researchers have developed various mathematical procedures to calculate the required number of rectification processes – plates, to obtain a desired purity.
- These procedures require the following data.
	- Number of components
	- Phase diagrams of the mixtures
	- Property data of mixture
	- Heat transfer correlations

- The methods of calculation that are used for theoretical plate calculations are
	- Method of Ponchon and Savarit.
	- Method of McCabe and Thiele.
	- Numerical Methods.

- **Ponchon – Savarit** method is an exact method for plate calculations.
- It is applicable to any number of components and this method requires a detailed data of enthalpy composition diagram(s) of the mixture.

- **McCabe – Thiele** method was proposed by two American scientists, Warren McCabe and Ernest Thiele, in the year 1925.
- This method is less general and is the simplest technique. It is widely used for binary mixtures at cryogenic temperatures.

- **Numerical** methods are the latest techniques, which are tedious, time consuming and computer intensive methods.
- For the sake of understanding and simplicity, only **McCabe – Thiele** method will be explained in this topic.

m

B

n

D

McCabe – Thiele Method

- This method calculates liquid and vapor fractions of each component at every plate and also the number of plates.
- For the sake of understanding, let the plates above the feed be denoted by subscript **n**.
- Similarly, the plates below the feed be denoted by subscript **m**.
- Let the total mole flow rate of top and bottom product be **D** and **B** respectively

- It is important to understand the indexing pattern of the plate and its corresponding liquid and vapor.
- Let jth and $(j+1)$ th plate be any intermediate plate as shown in the figure.
- The **liquid** and **vapor** leaving from top of the **jth** plate are L_i and V_i respectively.

- Similarly, the liquid coming to the **jth** plate is from $(j+1)$ th plate, therefore it is L_{j+1} .
- Also, the vapor coming to **jth** plate from bottom is vapor leaving the $(j-1)$ th plate. It is therefore, V_{j-1} .
- The vapor and liquid on any plate, L_i and V_i, are in thermal equilibrium.

m

B

n

D

McCabe – Thiele Method

- Consider a control volume enclosing the condenser and the top section of the **nth** plate as shown in the figure.
	- As explained earlier, for this **nth** plate, the vapor leaving is **V**_n and the liquid added is L_{n+1} .
- Applying the mole balance across the control volume per unit time, we have

 $V_n = L_{n+1} + D$

D

IN OUT

 V_n L_{n+1}

m

B

n

D

McCabe – Thiele Method

• Multiplying the mole balance equation with mole fraction of a particular component in a mixture, we get mole balance for that component as

$$
y_n V_n = x_{n+1} L_{n+1} + x_D D
$$

- Where,
	- y_{n} , x_{n+1} and x_{n} are mole fractions of a particular component in vapor, liquid and top product respectively.
	- It automatically means that x_D (mole fraction) is the desired purity of the top product.

m

B

n

D

 $\overline{\mathcal{Q}}_D$

McCabe – Thiele Method ;
)

• For control volume taking into account **Q_D** (watts) as the heat rejected by the condenser, the enthalpy balance is

given by

$$
H_n V_n = h_{n+1} L_{n+1} + h_D D + \dot{Q}_D
$$

• Dividing the above equation by **D**, we have

$$
\frac{H_n V_n}{D} = h_{n+1} \frac{L_{n+1}}{D} + h_D + \frac{\dot{Q}_D}{D}
$$

Rearranging the total mole balance equation, we have

$$
L_{n+1} = V_n - D
$$

McCabe – Thiele Method

• Eliminating L_{n+1}/D from the earlier equations, we get

$$
\frac{H_{n}V_{n}}{D} = h_{n+1} \left(\frac{V_{n}}{D} - 1 \right) + h_{D} + \frac{\dot{Q}_{D}}{D}
$$

$$
(H_n - h_{n+1}) \frac{V_n}{D} = \frac{\dot{Q}_D}{D} + h_D - h_{n+1}
$$

• Rearranging as a ratio of **D** and V_{n} , we have

$$
\frac{D}{V_n} = \frac{H_n - h_{n+1}}{\frac{Q_D}{D} + h_D - h_{n+1}}
$$

- The enthalpy composition diagram for a mixture of N_2 and $O₂$ is as shown.
- If we neglect the enthalpy variation with the mole fraction, the bubble and dew lines can be taken as horizontal.

McCabe – Thiele Method

- These arguments lead to the fact that liquid **(h)** and vapor **(H)** enthalpies are constant. Hence, \mathbf{D}/\mathbf{V}_n and $\mathbf{L}_{n+1}/\mathbf{V}_n$ are constant.
- Rearranging the molar balance for a component as

$$
y_n = \left(\frac{L_{n+1}}{V_n}\right) x_{n+1} + \left(\frac{D}{V_n}\right) x_D
$$

• The above equation represents a straight line and is called as **Operating Line** for stripping section.

McCabe – Thiele Method

$$
y_n = \left(\frac{L_{n+1}}{V_n}\right) x_{n+1} + \left(\frac{D}{V_n}\right) x_D
$$

For the top or upper most plate near the condenser, $X_{n+1} = X_D$.

Substituting,
$$
y_n = \left(\frac{L_{n+1}}{V_n}\right) x_D + \left(\frac{D}{V_n}\right) x_D
$$

$$
y_n = \left(\frac{L_{n+1}}{V_n} + \frac{L}{V_n}\right)x_D
$$

• For y – intercept, x_{n+1} =0.

$$
y_n = \left(\frac{D}{V_n}\right) x_D
$$

$$
y_n = x_D
$$

Two Points

$$
y_n = x_D \otimes x_{n+1} = x_D
$$

$$
y_n = (D/V_n)x_D \otimes x_{n+1} = 0
$$

- A plot of vapor versus liquid mole fractions for a particular component, say **A**, is as shown in the figure.
- Let **45o** diagonal or **y=x** line be as shown.
- The desired purity of this component **A**, in the top product is x_D as shown in the figure.

$$
y_n = \left[\frac{L_{n+1}}{V_n}\right] x_{n+1} + \left[\frac{D}{V_n}\right] x_D
$$

- The y intercept of the straight line is $(D/V_n)x_n$
- Similarly, the slope of the operating line is given by L_{n+1}/V_{n} , as shown in the above equation.

m

B

 $\overline{ \mathcal{Q}}_{B}$;
)

n

D

 $\overline{\mathcal{Q}}_D$

McCabe – Thiele Method ;
)

- Similarly, for the analysis of **mth** plate and boiler in the lower part, we have the following equations.
- \bullet Mole Balance: $L_{m+1} = V_m + B$

$$
x_{m+1}L_{m+1} = y_m V_m + x_B B
$$

• Energy Balance: $h_{m+1}L_{m+1} + \dot{Q}_B = H_mV_m + h_BB$

where, **B** and Q_B are mole flow rate out at the bottom and heat input to the boiler respectively.

m

B

 $\overline{ \mathcal{Q}}_{B}$;
)

n

D

 $\overline{\mathcal{Q}}_D$

McCabe – Thiele Method ;
)

Rearranging the above equations, we have the following.

$$
\frac{B}{V_m} = \frac{H_m - h_{m+1}}{\frac{Q_m}{B} - h_B + h_{m+1}} \left[\frac{L_{m+1}}{V_m} - 1 + \frac{B}{V_m} \right]
$$

• Applying the assumption, we have H_m and h_{m+1} as constant, implies **B/V_m** and L_{m+1}/V_m are constant. The operating line for stripping section is

$$
y_m = \left(\frac{L_{m+1}}{V_m}\right) x_{m+1} - \left(\frac{B}{V_m}\right) x_B
$$

McCabe – Thiele Method

$$
y_m = \left(\frac{L_{m+1}}{V_m}\right) x_{m+1} - \left(\frac{B}{V_m}\right) x_B
$$

• For the bottom or lower most plate near the boiler,

$$
\mathbf{x}_{m+1} = \mathbf{x}_B.
$$
\n
$$
\mathbf{y}_m = \left(\frac{L_{m+1}}{V_m}\right) x_B - \left(\frac{B}{V_m}\right) x_B
$$
\n
$$
\mathbf{y}_m = \left(\frac{L_{m+1}}{V_m}\right) x_B
$$
\n
$$
\mathbf{y}_m = \left(\frac{L_{m+1}}{V_m}\right) x_B
$$

• For y – intercept, $x_{m+1}=0$.

 $y_m = x_B$

Two Points

 $y_m = x_B$ **@** $x_{m+1} = x_B$

y_m=-(B/V_m)x_B @ x_{m+1}=0

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay
$$
^{26}
$$

 $m = \frac{1}{\sqrt{2}} \sqrt{B}$

 $=-\left(\frac{D}{V_m}\right)$

 $y_m = -\left(\frac{D}{V_m}\right)x$

m

B

 $(B₂)$

- The plot of vapor versus liquid mole fractions for a component **A** with operating line and **45o** diagonal be as shown.
- The purity of component **A** in the bottom product is x_B $\frac{1}{x_{A}}$ as shown in the figure.

$$
y_m = \left[\frac{L_{m+1}}{V_m}\right] x_{m+1} \left[\frac{B}{V_m}\right] x_B
$$

- The y intercept of the straight line is $(-(B/V_m)x_B)$.
- The slope of the operating line is given by **Lm+1/Vm** as shown in the above equation.

- *m n B D* $\dot{\mathcal{Q}}_{\scriptscriptstyle{B}}$ $\overline{\mathcal{Q}}_D$;
) *F*
	- The mixture that is to be separated is called as Feed. It is introduced into the column through an opening called as Feed inlet as shown in the figure.
	- Consider a control volume enclosing the **nth** and **mth** plates and feed inlet as shown.
	- Let **F** be the total number of moles in the Feed.

- We define a parameter **q** as the ratio of liquid moles in the feed to the total number moles in the feed.
- Mathematically,

$$
q=\frac{\left(L_{m+1}-L_{n+1}\right)}{F}
$$

• That is for **q=0**, feed is totally vapor and for **q=1**, it is totally liquid.

- From the earlier slides, we know the equations for both the sections.
- The locus of intersection of these operating lines denotes the feed condition.
- The condition of the feed is vital to determine the number of plates.

McCabe – Thiele Method

• Based on feed equation and **q** definition, we have

$$
F = V_n - V_m + L_{m+1} - L_{n+1} \quad q = \frac{(L_{m+1} - L_{n+1})}{F} \quad V_n - V_m = (1 - q)F
$$

• Again, from the operating lines of upper and lower sections, we can rearrange to give V_n and V_m as

$$
V_n = \left(\frac{L_{n+1}}{y_n}\right) x_{n+1} + \left(\frac{D}{y_n}\right) x_D \qquad V_m = \left(\frac{L_{m+1}}{y_m}\right) x_{m+1} - \left(\frac{B}{y_m}\right) x_B
$$

It is important to note that V_n - V_m is the vapor content in the feed.

McCabe – Thiele Method

- In the calculation of point of intersection of operating lines, we choose a common point to both these lines as **(x,y)**.
- Hence, x_{n+1} , x_{m+1} , y_m and y_n are replaced with this point as shown in the following equation.

$$
V_n - V_m = \frac{(L_{n+1} - L_{m+1})x}{y} + \frac{(x_D D + x_B B)}{y} = (1 - q)F
$$

• The locus of this point of intersection is the feed line or **q** line and is calculated as explained in the next slide.

m

B

 $\dot{\mathcal{Q}}_{\scriptscriptstyle{B}}$

n

D

 $\overline{\mathcal{Q}}_D$

McCabe – Thiele Method ;
)

• For a column as a whole, using the mass balance, we can write

$$
x_{F}F = \boxed{x_{D}D + x_{B}B} \qquad q = \frac{\boxed{(L_{m+1} - L_{n+1})}}{F}
$$

• Rearranging the following equations, we have

$$
\frac{(L_{n+1} - L_{m+1})x}{y} + \frac{(x_D - x_B)x}{y} = (1 - q)F
$$

$$
-qF\frac{x}{y} + \frac{x_F F}{y} = (1 - q)F
$$

McCabe – Thiele Method

• Rearranging,

$$
y = \left(\frac{q}{q-1}\right)x + \frac{x_F}{1-q}
$$

- The above equation represents a straight line with **q/(q-1)** and $x_F/(1-q)$ as slope and y intercept respectively.
- More importantly, it is the locus of point of intersection of operating lines. This line is called as **Feed** line or **q** line.

m

B

 $\dot{\mathcal{Q}}_{\scriptscriptstyle{B}}$

n

D

 $\overline{\mathcal{Q}}_D$

McCabe – Thiele Method ;
)

- It is clear that the value of parameter **q** is yet to be determined.
- Applying energy balance to the control volume as shown in figure, we have

$$
h_{F}F = V_{n}H_{n} - V_{m}H_{m} + L_{m+1}h_{m+1} - L_{n+1}h_{n+1}
$$

Mathematically, McCabe – Thiele assumption is

$$
H_n = H_m = H, h_{m+1} = h_{n+1} = h
$$

McCabe – Thiele Method

Upon substitution, we have

$$
h_{F}F = V_{n}H_{n} - V_{m}H_{m} + L_{m+1}h_{m+1} - L_{n+1}h_{n+1}
$$

$$
h_{F}F = (V_{n} - V_{m})H + (L_{m+1} - L_{n+1})h
$$

Also, we have the following equations.

$$
\boxed{V_n - V_m} = (1 - q)F \qquad q = \frac{\boxed{(L_{m+1} - L)}}{F}
$$

$$
q = \frac{\boxed{(L_{m+1} - L_{n+1})}}{F}
$$

• Combining the above equations and rearranging, we have

$$
q = \frac{H - h_F}{H - h}
$$

McCabe – Thiele Method

• Depending on the feed condition, **q** can take any value.

McCabe – Thiele Method

- The point of intersection of feed line or **q** line and **y=x** gives the content of the component **A** in feed, X_F .
- It is calculated by substituting **y=x** in the feed line as shown.

$$
x = \left(\frac{q}{q-1}\right)x + \frac{x_F}{1-q} \qquad x = x_F
$$

- Graphically, it is easier to draw a line through two given points rather than using a given slope and a point.
- This intersection point is used to draw the feed line as shown in the figure.

Summary

- Plate calculation procedures require the data like number of components, phase diagrams, property data of the mixtures, heat transfer correlations.
- **McCabe – Thiele** method is less general and is widely used for binary mixtures at cryogenic temperatures.
- The major assumption in this method is that the liquid and vapor enthalpies are independent of mole fraction.

Summary

• The equations of operating lines for striping and enriching sections are

$$
y_n = \left(\frac{L_{n+1}}{V_n}\right) x_{n+1} + \left(\frac{D}{V_n}\right) x_D \qquad y_m = \left(\frac{L_{m+1}}{V_m}\right) x_{m+1} - \left(\frac{B}{V_m}\right) x_B
$$

• The locus of intersection of these operating lines denotes the feed condition. It is given as

$$
y = \left(\frac{q}{q-1}\right)x + \frac{x_F}{1-q}
$$

• The point of intersection of feed line or **q** line and **y=x** gives the content of a component in the feed, x_F .

- A self assessment exercise is given after this slide.
- Kindly asses yourself for this lecture.

Self Assessment

- 1. McCabe Thiele method calculates ______ & of each component at every plate.
- 2. For a **jth** plate, the liquid an vapor leaving from top are denoted by ____ and ____ respectively.
- 3. The vapor and liquid on any plate are assumed to be in ______ equilibrium.
- 4. In McCabe Thiele method, liquid and vapor enthalpies are assumed to be _________.
- 5. The slope of operating line for stripping section is given by $________\$.
- 6. The y intercept of operating line for enriching section is given by ________.
- 7. Mixture that is to be separated is called as $__$

⁴⁷ **Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay**

Self Assessment

- 8. q=0 when the feed is totally _______.
- 9. ________ and ______ are the slope and the y intercept of q line respectively.
- 10. Fill the following table.

Answers

- 1. Vapor fraction, liquid fraction
- 2. L_i and V_i
- 3. Thermal
- 4. Constant
- 5. L_{n+1}/V_n
- 6. $(-(B/V_m)x_B)$
- 7. Feed
- 8. Vapor
- 9. $q/(q-1)$ and $x_F/(1-q)$

Thank You!