#### Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No - 27

### **Earlier Lecture**

- A Cryocooler is a mechanical device operating in a closed cycle, which generates low temperature.
- It eliminates cryogen requirement, offers reliable operation and is also cost effective.
- Heat exchangers can either be regenerative or recuperative type depending upon heat exchange.
- **Recuperative Type:** J T, Brayton, Claude.
- Regenerative Type: Stirling, GM, Pulse Tube.

### **Outline of the Lecture**

#### **Topic : Cryocoolers**

- Ideal Stirling cycle
- Working of Stirling Cryocooler
- Schmidt's Analysis
- Conclusions

### **History**

- A well developed and a most commonly used Cryocooler is the Stirling Cycle Cryocooler.
- This cycle was first conceived by Robert Stirling in the year 1815. It was an engine cycle and was aimed to produce work (engine).
- The important events that occurred in the history of cryocoolers are as given in the next slide.

### The Chronology

| Year | Event                                                       |
|------|-------------------------------------------------------------|
| 1815 | Robert Stirling – Stirling Engine                           |
| 1834 | John Herschel – concept of using as a cooler                |
| 1861 | Alexander Kirk – The concept into practice                  |
| 1873 | Davy Postle – Free Piston system                            |
| 1956 | Jan Koehler – First commercial machine for air liquefaction |
| 1965 | Jan Koehler – Nitrogen Liquefaction                         |

### **An Ideal Stirling Cycle**



- Consider a p V chart as shown in the figure.
- 1→2: Isothermal compression at T<sub>c</sub>.

$$p_1V_1 = p_2V_2$$

$$T_1 = T_2 = T_C$$

$$dQ = dW = -\Re T_C \ln \left[\frac{V_2}{V_1}\right]$$

### **An Ideal Stirling Cycle**



2→3: Constant volume heat rejection.

$$V_{2} = V_{3}$$

$$dQ = +C_V \left(T_E - T_C\right)$$

 $3\rightarrow 4$ : Isothermal expansion.

$$p_3V_3 = p_4V_4$$

$$T_3 = T_4 = T_E$$

$$dQ = dW = -\Re T_C \ln \left[\frac{V_4}{V_2}\right]$$

### **An Ideal Stirling Cycle**



4→1: Constant volume heat absorption.

$$V_{4} = V_{1} \qquad dQ = -C_{V} \left(T_{C} - T_{E}\right)$$
$$COP = \frac{Q_{E}}{Q_{C} - Q_{E}}$$
$$+ \Re T_{E} \ln \left[\frac{V_{4}}{V_{3}}\right]$$
$$= \frac{-\Re T_{C} \ln \left[\frac{V_{2}}{V}\right] - \Re T_{E} \ln \left[\frac{V_{4}}{V}\right]}$$

### **An Ideal Stirling Cycle**





### **Stirling & Carnot Cycles**



Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

### **Stirling & Carnot Cycles**



### **Ideal Stirling Cycle**



### **Ideal Stirling Cycle**



### Ideal Stirling Cycle



- As mentioned in the earlier lecture, the characteristics of a Stirling cycle are
  - High frequency.
  - Regenerative heat exchanger.
  - Phase difference between the piston and the displacer motions.

### **Actual Stirling Cycle**



- In actual Stirling cycle the discontinuous motion can not be achieved. In view of this sinusoidal motion may be implemented.
- This motion is realistic and can be achieved using a Crank or gas spring mechanism.

### Actual Stirling Cycle

- In reality, the actual working cycle will be different from Ideal Stirling Cycle in following ways.
  - Discontinuous motion, difficult to realize in practice.
  - Presence of void volume or dead space (not swept by piston or displacer), pressure drop.
  - Ineffectiveness in heat transfer or regeneration.
  - Non isothermal compression and expansion.

# **Stirling Cryocooler – Types**



- Depending upon the relative arrangements of piston and displacer/piston, various types of Stirling Cryocoolers are possible, namely
  - **a** type Stirling Cryocooler.
  - **β** type Stirling Cryocooler.
  - **γ** type Stirling Cryocooler.

17

# **Stirling Cryocooler – Types**



- Two Piston arrangement (a type)
- whose drive mechanisms may be mounted on same crank shaft.
- Integral Piston & Displacer arrangement (β type)
- The piston and displacer are housed inside same cylinder.

## **Stirling Cryocooler – Types**



- Split Piston & Displacer arrangement (γ type)
- The compression space is divided.
- These systems have variable dead volume in compression space due to the movement of displacer.

### **Design Parameters**

 The various design parameters of a Stirling Cryocooler are as follows.



- Evaporator temperature (T<sub>E</sub>)
- Condenser temperature (T<sub>c</sub>)
- Compression Volume (V<sub>c</sub>)
- Expansion Volume (V<sub>E</sub>)
- Regenerator Volume (V<sub>R</sub>)
- P<sub>max</sub>, P<sub>min</sub>, P<sub>avg</sub>.
- Phase angle (a)
- Crank angle (ø)

### Schmidt's Analysis

- In the year 1861, Gustav Schmidt, a German scientist, presented a Stirling Cryocooler analysis.
- This analysis is based on a realistic cycle and is assumed to provide a first guess of dimensions. The following are the assumptions.
  - Perfect isothermal compression, expansion.
  - Harmonic motion of piston and displacer.
  - Perfect regeneration.

# Schmidt's Analysis

- The non dimensional parameters in the Schmidt's analysis are
- Swept volume ratio :  $k = \frac{V_c}{V_c}$



• Temperature ratio :  $\tau = \frac{I_c}{T_c}$ 



• Dead volume ratio :  $X = \frac{V_D}{V}$ 



### Schmidt's Analysis

Expansion volume variation :

 $V_e = \frac{1}{2} V_E \left( 1 + \cos \phi \right)$ 

Compression volume variation

$$V_c = \frac{1}{2} V_C \left( 1 + \cos(\phi - \alpha) \right)$$



$$V_c = \frac{1}{2} k V_E \left( 1 + \cos(\phi - \alpha) \right)$$





- Let the instantaneous pressure in the system be same throughout the system, p.
- Also,  ${\rm T_e}$  and  ${\rm T_c}$  are assumed to be constants as  ${\rm T_E}$  and  ${\rm T_c}$  respectively.
- Let M<sub>T</sub> be given as shown.

$$M_T = \frac{KV_E}{2RT_C}$$

### Schmidt's Analysis



### Schmidt's Analysis

 Substituting, A, B, θ and δ in the mass equation and rearranging, we get



### Schmidt's Analysis

Mean pressure

$$p_m = \frac{1}{2\pi} \int_{0}^{2\pi} p d(\theta - \phi)$$

$$p_m = p_{\max} \sqrt{\frac{1 - \delta}{1 + \delta}}$$

$$Q_{E} = \int p dV_{e} = \frac{\pi p_{m} \delta \sin \theta V_{E}}{1 + \left[1 - \delta^{2}\right]^{0.5}} \qquad Q_{C} = \int p dV_{c} = \frac{\pi p_{m} V_{E} \delta \sin(\theta - \alpha) k}{1 + \left[1 - \delta^{2}\right]^{0.5}}$$
$$COP = \frac{Q_{E}}{W_{T}} \qquad COP = \frac{Q_{E}}{Q_{C} - Q_{E}} \qquad = \frac{T_{E}}{T_{C} - T_{E}}$$

#### Losses

- In the earlier slide, we saw the cooling effect based on Schmidt's analysis.
- But, in an actual system, there are many losses. Few of them are as listed below.
  - Ineffectiveness of regenerator.
  - Pressure drop in system.
  - Solid conduction losses.
  - Shuttle conduction losses.
  - Losses in power input.

#### Losses

- Considering the above mentioned losses, the net cooling effect and gross power required is given by the following correlations.
  - $Q_{net} = Q_E \Sigma(losses)$ .
  - $W_{total} = W_T + \Sigma(losses)$ .
- In general, Q<sub>E</sub> calculated from Schmidt's analysis, in which 60 – 70% are considered as losses, while losses in power input is due to mechanical efficiency.

### Summary

- A Stirling Cycle was first conceived by Robert Stirling in the year 1815.
- $COP_{(Stirling)} = COP_{(Carnot)}$ .
- In reality, the actual working cycle has discontinuous motion, pressure drop, ineffectiveness and non isothermal processes.
- Depending upon the relative arrangements of piston and displacer/piston,  $\mathbf{a}$ ,  $\boldsymbol{\beta}$ ,  $\boldsymbol{\gamma}$  are the different types of Stirling cryocooler.

### Summary

- Gustav Schmidt presented a Stirling Cryocooler analysis in the year 1861, it is assumed to provide a first guess of dimensions.
- The net cooling effect and gross power required is given by the following correlations.

• 
$$Q_{net} = Q_E - \Sigma(losses)$$
.

• 
$$W_{total} = W_T + \Sigma(losses)$$
.

- A self assessment exercise is given after this slide.
- Kindly asses yourself for this lecture.

### Self Assessment

- 1. A Stirling cycle consist of two \_\_\_\_\_ processes.
- 2. In an isothermal process, dQ is given by \_\_\_\_\_.
- 3. In a constant volume process, dU is given by \_\_\_\_\_.
- 4. COP<sub>Carnot</sub> and COP<sub>Stirling</sub> are \_\_\_\_\_.
- 5. COP of Stirling cycle is \_\_\_\_\_.
- 6. In an actual Stirling cycle, the discontinuous motion is approximated to \_\_\_\_\_ motion.
- 7. The volume not swept by piston/displacer is \_\_\_\_\_.
- 8. In a \_\_\_\_\_ type unit, the piston and displacer are housed inside same cylinder.
- 9. In Schmidt's analysis, instantaneous pressure is assumed to be \_\_\_\_\_.

### Answers

- 1. Isothermal and Constant volume
- 2.  $dQ = dW = -\Re T_C \ln [V_2 / V_1]$
- $3. \quad dU = +C_V \left(T_E T_C\right)$
- 4. Equal.
- $5. \quad T_E / (T_C T_E)$
- 6. Sinusoidal
- 7. Void volume
- 8. Beta
- 9. Constant

### **Thank You!**

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay