Prof. Millind D. Atrey

Department of Mechanical Engineering, **IIT Bombay**

Lecture No. 27

Earlier Lecture

- A Cryocooler is a mechanical device operating in a closed cycle, which generates low temperature.
- It eliminates cryogen requirement, offers reliable operation and is also cost effective.
- Heat exchangers can either be regenerative or recuperative type depending upon heat exchange.
- **Recuperative Type:** J T, Brayton, Claude.
- **Regenerative Type:** Stirling, GM, Pulse Tube.

Outline of the Lecture

Topic : Cryocoolers

- Ideal Stirling cycle
- Working of Stirling Cryocooler
- Schmidt's Analysis
- Conclusions

History

- A well developed and a most commonly used Cryocooler is the Stirling Cycle Cryocooler.
- This cycle was first conceived by Robert Stirling in the year 1815. It was an engine cycle and was aimed to produce work (engine).
- The important events that occurred in the history of cryocoolers are as given in the next slide.

The Chronology

An Ideal Stirling Cycle

- Consider a $p V$ chart as shown in the figure.
- **12:** Isothermal compression at **T**_c.

$$
p_1V_1 = p_2V_2
$$

$$
T_1 = T_2 = T_C
$$

$$
dQ = dW = -\Re T_C \ln \left[\frac{V_2}{V_1} \right]
$$

An Ideal Stirling Cycle

• **23:** Constant volume heat rejection.

$$
V_2 = V_3
$$

$$
dQ = +C_V (T_E - T_C)
$$

3→4: Isothermal expansion.

$$
p_3V_3=p_4V_4
$$

$$
T_3=T_4=T_E
$$

$$
dQ = dW = -\Re T_c \ln \left[\frac{V_4}{V_3} \right]
$$

An Ideal Stirling Cycle

• **41:** Constant volume heat absorption.

$$
V_4 = V_1 \qquad dQ = -C_V (T_C - T_E)
$$

$$
COP = \frac{Q_E}{Q_C - Q_E}
$$

$$
+ \Re T_E \ln \left[\frac{V_4}{V_3} \right]
$$

$$
= \frac{}{-\Re T_C \ln \left[\frac{V_2}{V_1} \right] - \Re T_E \ln \left[\frac{V_4}{V_3} \right]}
$$

An Ideal Stirling Cycle

Stirling & Carnot Cycles

Stirling Cycle

2 F
T $T_{\rm c}$ 1 2 Temperature Temperature Ω –1 Pressure Pressure Const $\vec{\mathcal{S}}$ 3 $\rm T_E$ 3 4 4 Volume – V Entropy – s

Stirling & Carnot Cycles

Ideal Stirling Cycle

Ideal Stirling Cycle

Ideal Stirling Cycle

- As mentioned in the earlier lecture, the characteristics of a Stirling cycle are
	- High frequency.
	- Regenerative heat exchanger.
	- Phase difference between the piston and the displacer motions.

Actual Stirling Cycle

- In actual Stirling cycle the discontinuous motion can not be achieved. In view of this sinusoidal motion may be implemented.
- This motion is realistic and can be achieved using a Crank or gas spring mechanism.

Actual Stirling Cycle

- In reality, the actual working cycle will be different from Ideal Stirling Cycle in following ways.
	- Discontinuous motion, difficult to realize in practice.
	- Presence of void volume or dead space (not swept by piston or displacer), pressure drop.
	- Ineffectiveness in heat transfer or regeneration.
	- Non isothermal compression and expansion.

Stirling Cryocooler – Types

- Depending upon the relative arrangements of piston and displacer/piston, various types of Stirling Cryocoolers are possible, namely
	- **α** type Stirling Cryocooler.
	- **β** type Stirling Cryocooler.
	- **γ** type Stirling Cryocooler.

Stirling Cryocooler – Types

- **Two Piston arrangement (α type)**
- whose drive mechanisms may be mounted on same crank shaft.
- **Integral Piston & Displacer arrangement (β type)**
- The piston and displacer are housed inside same cylinder.

Stirling Cryocooler – Types

- **Split Piston & Displacer arrangement (γ type)**
- The compression space is divided.
- These systems have variable dead volume in compression space due to the movement of displacer.

Design Parameters

• The various design parameters of a Stirling Cryocooler are as follows.

- Evaporator temperature (T_F)
- Condenser temperature (T_c)
- Compression Volume (V_c)
	- **Expansion Volume (V_E)**
	- Regenerator Volume (V_R)
	- **Pmax, Pmin, Pavg**.
	- Phase angle **(α)**
	- Crank angle **(ø)**

Schmidt's Analysis

- In the year 1861, Gustav Schmidt, a German scientist, presented a Stirling Cryocooler analysis.
- This analysis is based on a realistic cycle and is assumed to provide a first guess of dimensions. The following are the assumptions.
	- Perfect isothermal compression, expansion.
	- Harmonic motion of piston and displacer.
	- Perfect regeneration.

Schmidt's Analysis

- The non dimensional parameters in the Schmidt's analysis are
- Swept volume ratio : $k = \frac{r_c}{V}$

• Temperature ratio : $\tau = \frac{4C}{\pi}$

• Dead volume ratio : $X = \frac{YD}{Y}$

Schmidt's Analysis

Expansion volume variation :

 $\frac{1}{2}V_E(1 + \cos \phi)$ 2 $V_e = \frac{1}{2} V_E \left(1 + \cos \phi \right)$

Compression volume variation

$$
V_c = \frac{1}{2} \frac{V_c}{V_c} \left(1 + \cos(\phi - \alpha) \right) \quad k = \frac{V_c}{V_E}
$$

$$
V_c = \frac{1}{2} k V_E \left(1 + \cos(\phi - \alpha) \right)
$$

- Let the instantaneous pressure in the system be same throughout the system, **p**.
- Also, T_e and T_c are assumed to be constants as T_F and T_c respectively.
- Let M_T be given as shown.

$$
M_T = \frac{K V_E}{2RT_C}
$$

Schmidt's Analysis

Schmidt's Analysis

• Substituting, **A**, **B**, **θ** and **δ** in the mass equation and rearranging, we get

Schmidt's Analysis

Mean pressure

$$
p_m = \frac{1}{2\pi} \int\limits_{0}^{2\pi} p d(\theta - \phi)
$$

$$
p_m = p_{\max} \sqrt{\frac{1-\delta}{1+\delta}}
$$

$$
Q_E = \int pdV_e = \frac{\pi p_m \delta \sin \theta V_E}{1 + \left[1 - \delta^2\right]^{0.5}} \qquad Q_C = \int pdV_c = \frac{\pi p_m V_E \delta \sin(\theta - \alpha) k}{1 + \left[1 - \delta^2\right]^{0.5}}
$$

$$
COP = \frac{Q_E}{W_T} \qquad COP = \frac{Q_E}{Q_C - Q_E} \qquad = \frac{T_E}{T_C - T_E}
$$

Losses

- In the earlier slide, we saw the cooling effect based on Schmidt's analysis.
- But, in an actual system, there are many losses. Few of them are as listed below.
	- Ineffectiveness of regenerator.
	- Pressure drop in system.
	- Solid conduction losses.
	- Shuttle conduction losses.
	- Losses in power input.

Losses

- Considering the above mentioned losses, the net cooling effect and gross power required is given by the following correlations.
	- $Q_{\text{net}} = Q_{\text{F}} \Sigma(\text{losses}).$
	- $W_{total} = W_{T} + \Sigma (losses)$.
- In general, Q_F calculated from Schmidt's analysis, in which 60 – 70% are considered as losses, while losses in power input is due to mechanical efficiency.

Summary

- A Stirling Cycle was first conceived by Robert Stirling in the year 1815.
- $COP_{(Stirling)} = COP_{(Carnot)}$.
- In reality, the actual working cycle has discontinuous motion, pressure drop, ineffectiveness and non isothermal processes.
- Depending upon the relative arrangements of piston and displacer/piston, **α**, **β**, **γ** are the different types of Stirling cryocooler.

Summary

- Gustav Schmidt presented a Stirling Cryocooler analysis in the year 1861, it is assumed to provide a first guess of dimensions.
- The net cooling effect and gross power required is given by the following correlations.

•
$$
Q_{\text{net}} = Q_{\text{E}} - \Sigma(\text{losses}).
$$

•
$$
W_{\text{total}} = W_T + \Sigma(\text{losses}).
$$

- A self assessment exercise is given after this slide.
- Kindly asses yourself for this lecture.

Self Assessment

- 1. A Stirling cycle consist of two ________ processes.
- 2. In an isothermal process, dQ is given by ________.
- 3. In a constant volume process, dU is given by _____.
- 4. COP_{Carnot} and COP_{Stirling} are ______.
- 5. COP of Stirling cycle is ________.
- 6. In an actual Stirling cycle, the discontinuous motion is approximated to _______ motion.
- 7. The volume not swept by piston/displacer is _____.
- 8. In a <u>sace type</u> unit, the piston and displacer are housed inside same cylinder.
- 9. In Schmidt's analysis, instantaneous pressure is assumed to be ______.

Answers

- 1. Isothermal and Constant volume
- 2. $dQ = dW = -\Re T_c \ln [V_2 / V_1]$
- 3. $dU = + C_V (T_E T_C)$
- 4. Equal.
- 5. $T_{\scriptscriptstyle E}$ / $(T_{\scriptscriptstyle C} \!-\! T_{\scriptscriptstyle E})$
- 6. Sinusoidal
- 7. Void volume
- 8. Beta
- 9. Constant

Thank You!