Prof. Milind D. Atrey

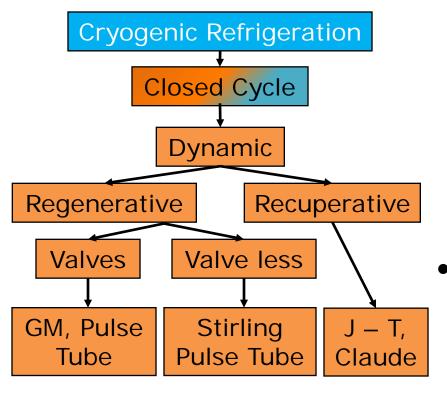
Department of Mechanical Engineering, IIT Bombay

Lecture No - 29

Earlier Lecture

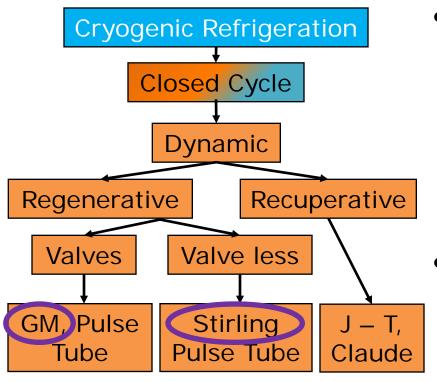
- For an optimum design of a Stirling cryocooler, a compromise between the operating and the design parameters may be sought.
- Based on Schmidt's analysis, the variation of O_E / (p_{max}V_T) and W_T / (p_{max}V_T) for a few non – dimensional numbers was presented.
- A combined effect of parameters on performance of system as a whole, is given in Walker's optimization charts.

Earlier Lecture


- In order to account for the various losses and to make the analysis more realistic, we have
 - $Q_{E, Design} = 3 X Q_{E, Reqd}$
- In the earlier lecture, a tutorial problem was solved on Stirling cryocooler design using the Walker's Optimization Charts.
- For a given Q_{E, Design}, if the dimensions of the piston and expander displacer are very large, the system is designed for two cylinders or more.

Outline of the Lecture

Topic : Cryocoolers


- Gifford McMahon (GM) Cryocooler
- GM and Stirling Cryocooler A comparison
- Working of a GM Cryocooler
- Regenerators, Valve mechanism
- Applications

Introduction

- In the earlier lecture, we have seen the classification of cryogenic refrigeration.
- The closed cycle division of the same is as shown.

Introduction

- The working of a valve less, closed cycle, regenerative type, Stirling Cryocooler was discussed.
- On the other hand, the valved system under the regenerative type is the Gifford – McMahon (GM) Cryocooler.

W

V₁

 V_2

 Q_c, T_c

G – M

 \dot{Q}_{0}, T_{0}

Gifford – McMahon System

- The schematic of a Gifford McMahon (GM) system is as shown in the figure.
- W. E. Gifford and H. O. Mc Mahon were the first to present this idea of introduction of valves in the year 1950.
 - This valve mechanism is used to generate the pressure variation or the pressure pulse.
 - This working cycle was later named as Gifford – McMahon cycle.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

 V_2

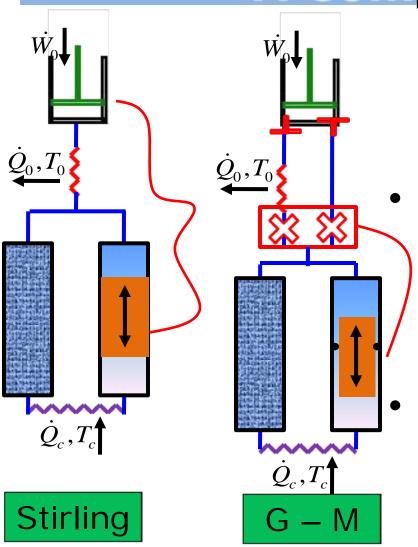
Gifford – McMahon System

- The sequential opening and closing of these valves generate the required pressure variation or the pressure pulse.
- The timing of the valves in relation to the position of the displacer is vital for optimum operation.
 - Therefore in a GM system, there is a relation between the pressure pulse generated by the valve mechanism and the expander displacer motion.

V₁

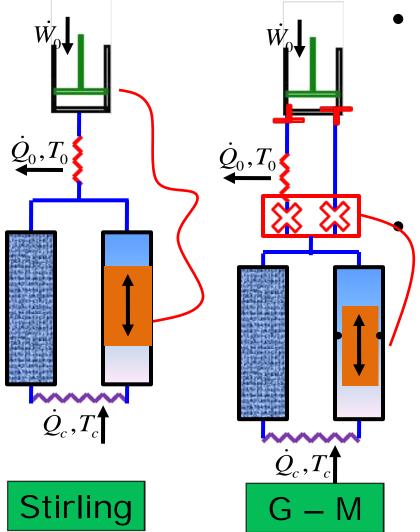
 V_2

 Q_c, T_c


G – M

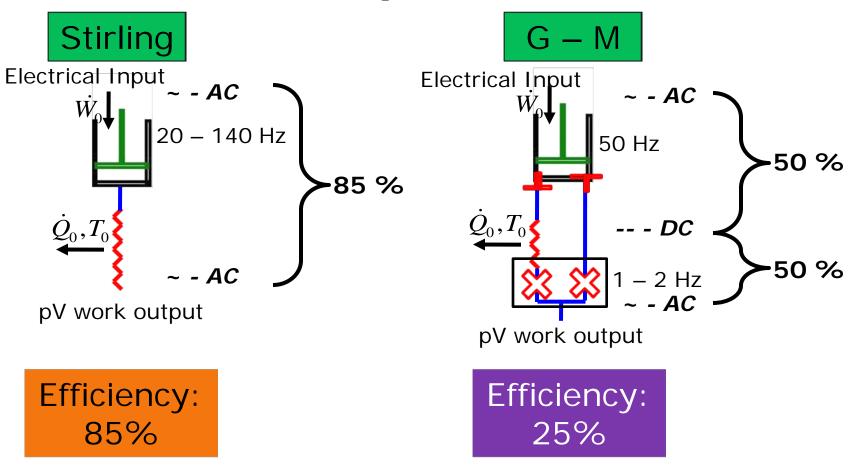
Gifford – McMahon System

- Different variations in the valve design for a GM Cryocooler are possible.
- Some of the systems may have one valve each on the high and the low pressure lines.
 - Also, some of the systems may have poppet valves, solenoid valves.
 - Commercially available cryocoolers have rotary valves to control or regulate the flow of the working medium.


Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

A Comparison

- At low frequencies, the rubbing seal between the displacer and the cylinder is perfect.
 - The valves facilitates production of any kind of pressure wave as per the requirement of system.


A Comparison

Stirling cryocooler is a high frequency machine where as, a GM Cryocooler is a low frequency machine.

Although, presence of valves deteriorates the system performance, but it is possible to reach much lower temperatures using a GM system as compared to a Stirling system.

A Comparison

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

A Comparison

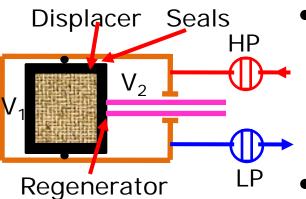
Stirling

- 20 150 Hz frequency.
- Direct connection (Compressor – expander).
- Dry compressor.
- High COP (10 W at 80 K, 350 W).
- Low pressure ratios.
- 20 K using two stages.
- Low power compressors and compact.

Gifford - McMahon

- 1 5 Hz frequency.
- Valved connection (Compressor – expander).
- Lubricated compressor.
- Low COP (100 W at 80 K, 4000 W+Q_{chill}).
- High pressure ratios.
- 4 K using two stages.
- High power compressors and bulky.

A Comparison

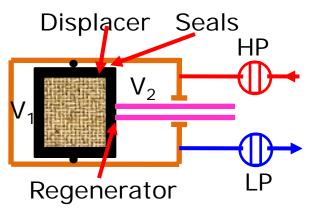

Stirling

- Miniaturization is possible due to fewer moving parts.
- Suitable for space application.

Gifford - McMahon

- Miniaturization is not possible due to the valves.
- Mostly, land based applications.

Working of GM Cryocooler

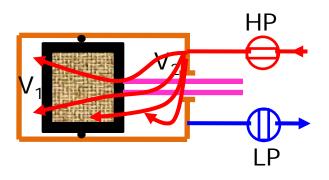


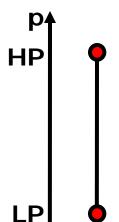
- Consider a displacer housing the regenerator, at BDC position as shown in the figure.
- The cold space (V₁) and the warm space (V₂) are as shown.
- In this schematic, both the high (HP) and low (LP) valves are in closed position.
- The seals are provided to reduce the leakage across the displacer.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

V₁

Working of GM Cryocooler

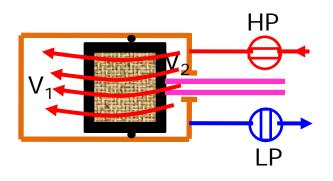

pŧ

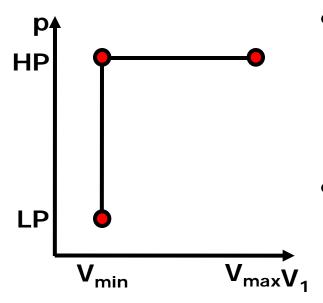

LP

 \mathbf{V}_{\min}

 The corresponding situation of the cold space (V₁), when plotted on a pV diagram is as shown in the adjacent figure.

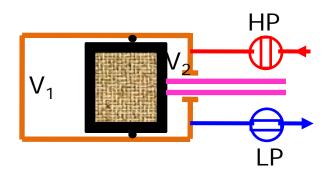
Working of GM Cryocooler

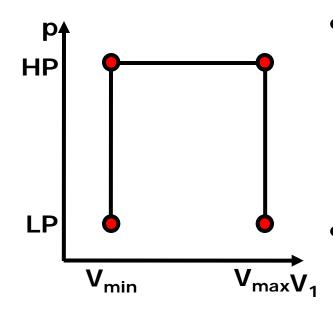




 \mathbf{V}_{\min}

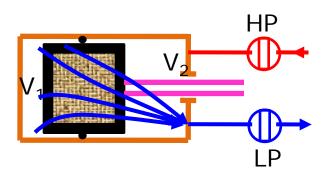
With the opening of the HP valve, the high pressures gas fills
 V₁ and V₂ spaces at a constant volume as shown in the figure.

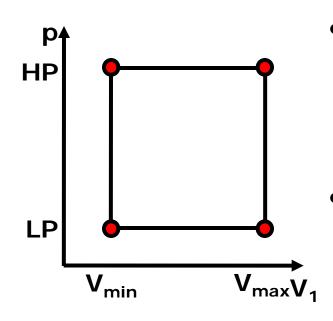

Working of GM Cryocooler



- The displacer moves back displacing the gas from V₂ to V₁ at a constant pressure.
- The cold space volume (V₁) increases where as, the warm space volume (V₂) decreases.

Working of GM Cryocooler





Now, the **HP** valve is closed and **LP** valve is opened. This leads to an expansion of gas, reducing the pressure from **HP** to **LP**.

This expansion produces cold in cold space volume (V₁).

Working of GM Cryocooler

- The displacer moves back, reducing the cold space volume (V₁).
- The cycle continues to produce lower and lower temperatures.

Multistaging in GM Cryocooler

2nd Stage Cold, End

- A single stage GM cryocooler produces a refrigeration effect of 12 W at 80 K, for a 1.2 kW input power.
- In order to reach much lower temperatures, say, in the order of 10 K to 4.2 K, multistaging is done in these systems.

Multistaging in GM Cryocooler

2nd Stage Cold, End

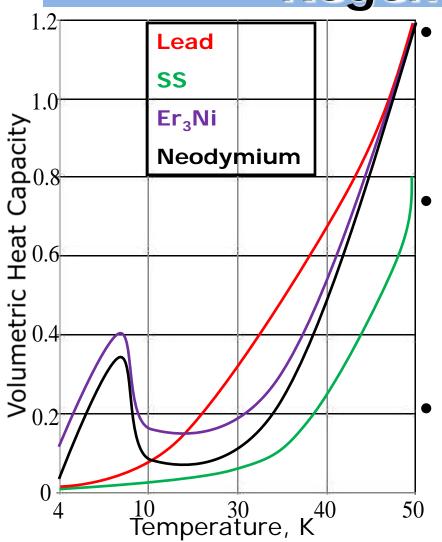
Commercially available two stage GM cryocoolers are capable of reaching temperatures lower than 4.2 K.

Components of GM Cryocooler

- Video of GM cryocooler.
- For the sake of understanding, a demo video of a GM cryocooler at IIT Bombay is shown.
- It is a two stage machine capable of reaching a temperature of 10 K.

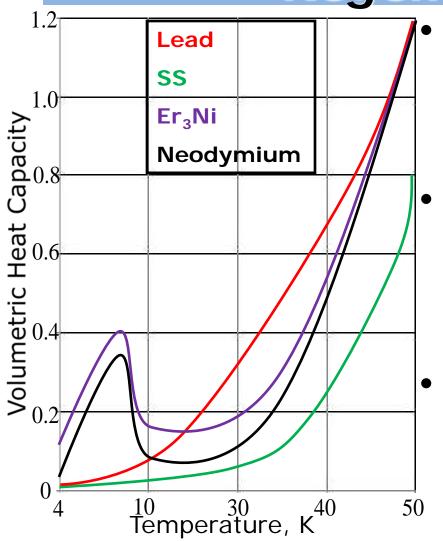
Components of GM Cryocooler

- The basic components of any GM cryocooler are as listed below.
 - Helium compressor scroll/reciprocating type.
 - Flex lines HP line, LP line.
 - Regenerator(s) and Displacer(s).
 - Valve mechanism rotary, solenoid, poppet.
 - Cooling arrangements Air or water cooled.


Regenerators

- The regenerator is the most vital component and is often called as a heart of a cryocooler.
- The major aspects of a regenerator are
 - Dimensions length, diameter.
 - Material Heat capacity, thermal conductivity.
 - Porosity.
 - Working temperature.
 - Heat transfer and minimum pressure drop.

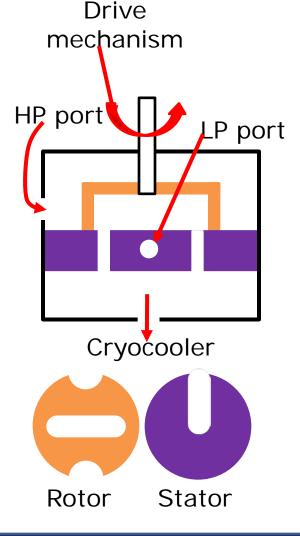
Regenerators


- In general, a material with high heat capacity is chosen as a regenerator material.
- This is because, the energy exchanged between the working gas and the matrix is directly dependent on the relative heat capacity.
- As seen in the earlier lectures, it is important to note that the C_P of a material decreases with the decrease in the temperature.
- Very often, a combination of various rare earth materials is used as a regenerator material.
 Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Regenerators

- The variation of volumetric heat capacity with temperature is as shown.
- Materials like **SS** are not preferred at lower temperatures (~ **30 K**) due to low heat capacity.
 - Materials like **Lead**, **Er₃Ni** and **Neodymium** exhibit high heat capacities at lower temperatures.

Regenerators

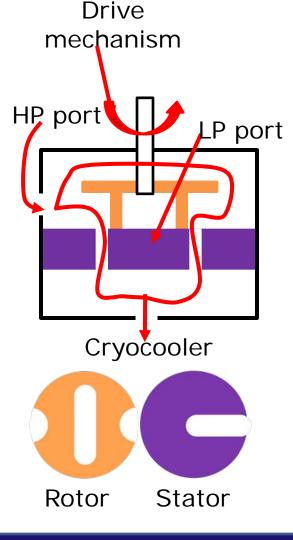


- In single stage GM systems (~ 30 K), SS meshes are used.
- Two stage (~ **10 K**)
 - 1st stage: **SS** mesh
 - 2nd stage: Lead balls
- Two stage (~ 4.2 K)
 - 1st stage: **SS + Lead**
 - 2nd stage: Lead + Er₃Ni.

Valve Mechanism

- As mentioned earlier, the sequential opening and closing of the valve mechanism, generates the required pressure variation or the pressure pulse.
- The rotary valve should operate at an optimum frequency.
- The schematic and the working of a most commonly used rotary valve is explained in the next slide.

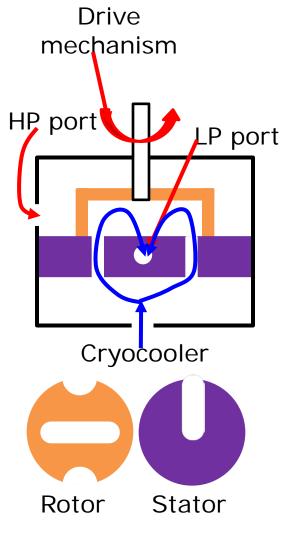
Valve Mechanism



The various parts of a rotary valve are as listed below.

- Drive mechanism
- HP, LP ports
- Rotor, Stator
- The rotor is driven by a drive mechanism, maintaining a perfect seal on the stator.
- The slotted rotor and stator discs, connect the cryocooler to HP and LP lines respectively.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay


Valve Mechanism

High Pressure Position

- When the slots on the rotor disc match with the stator as shown, the high pressure gas from the compressor flows to the cryocooler.
- In this position, the LP port is masked/closed.

Valve Mechanism

Low Pressure Position

- With the rotation of the rotor disc, at a particular instant, the slots on the rotor disc are masked/closed.
- In this position, the hole in the stator is unmasked/opened, connecting the cryocooler to the LP port, as shown in the figure.

Applications

- GM cryocoolers find applications in the following areas.
 - MRI machines
 - Cryo pumps
 - N₂ liquefiers
 - Cryoprobes
- These machines also find applications in areas like low temperature physics and scientific applications.

Summary

- W. E. Gifford and H. O. Mc Mahon were the first to present this idea of introduction of valves in the year 1950.
- A GM system has a valve mechanism to control/regulate the flow between the compressor and the regenerator – displacer assembly.
- For an optimum performance, the relation between the pressure pulse generated by the valve mechanism and the expander – displacer motion is vital.

Summary

- A GM system can reach much lower temperatures as compared to a Stirling system, but may require a high powered compressor due to the inefficiency of the valves.
- Multistaging is done to reach lower temperatures (4.2 K to 10 K).
- The basic components are Helium compressor, Flex lines, Regenerator(s), Displacer(s) and Valve mechanism.

Summary

- The choice of the regenerator material is dependent on the lowest working temperature of the cryocooler.
- Single stage (~ 30 K), SS mesh.
- 2 stage (~ 10 K), 1st stage: SS mesh, 2nd stage: Lead balls.
- 2 stage (~ 4.2 K), 1st stage: SS mesh + Lead balls, 2nd stage: Lead balls + Er₃Ni balls.
- Commercially available cryocoolers have rotary valves to control/regulate the flow.

- A self assessment exercise is given after this slide.
- Kindly asses yourself for this lecture.

Self Assessment

- 1. ____ is used to generate the pressure variation in a GM system.
- 2. In a GM cycle, the relation between the pressure pulse and the _____ is vital.
- 3. Rubbing seals between the displacer and the cylinder is perfect at _____ frequencies.
- In a _____ system, miniaturization is not possible due to the valves.
- 5. In GM systems, ____is done in order to reach lower temperatures.
- 6. ____ is the most vital component and is often called as a heart of a cryocooler.
- 7. ____ decreases with the decrease in temperature.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Self Assessment

- 8. Materials like ____, ____ and _____ exhibit high heat capacities at lower temperatures.
- 9. Rotary valve should operate at an _____ frequency.
- 10. Commercially available cryocoolers have _____ types of valves to control/regulate the flow.

Answers

- 1. Valve mechanism
- 2. Expander displacer piston.
- 3. Low
- 4. GM
- 5. Multistaging
- 6. Regenerator
- 7. C_P
- 8. Lead, Er₃Ni and Neodymium
- 9. Optimum
- 10.Rotary

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay