Prof. Milind D. Atrey

Department of Mechanical Engineering, IIT Bombay

Lecture No -

Overview of Earlier Lecture

- What is Cryogenics and its applications
- Temperature Scales
- Cryogens, Properties, T s Diagram
 - Argon
 - Air
 - Nitrogen
 - Neon

Outline of the Lecture

- Hydrogen
- Ortho and Para forms of Hydrogen
- Helium
- Phase diagram of Helium

Hydrogen

Hydrogen

• Hydrogen exists in diatomic form as H₂.

Normal Boiling Point	K	20.27
Normal Freezing Point	K	13.95
Critical Pressure	MPa	1.315
Critical Temperature	K	33.19
Liquid Hydrogen Density	kg/m ³	70.79
Latent Heat	kJ/kg	443

T – s <u>diagram of Hy</u>drogen

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Hydrogen

Hydrogen

• It has three isotopes viz, hydrogen, deuterium and tritium.

Isotope	Relative %	Atomic Mass (1p+n)
Hydrogen	6400	1+0
Deuterium	1	1+1
Tritium	Very rare	1+2

- Tritium is radioactive and is unstable with a T_{half} as 12.5 years.

Hydrogen

Hydrogen

- The relative ratio of existence of hydrogen as diatomic molecule (H₂) and as Hydrogen Deuteride (HD) is 3200:1.
- Hydrogen exists in two molecular forms Ortho and Para.

Ortho & Para Hydrogen

- Spin is defined as a rotation of a body about its own axis.
- A H₂ molecule has 2 protons and 2 electrons.
- The distinction between the two forms of hydrogen is the direction of the spin of protons.

Ortho & Para Hydrogen

Ortho - Hydrogen

Para - Hydrogen

- The two protons possess a spin which gives the angular momentum.
- If the nuclear spins are in same direction for both the protons, it is Ortho Hydrogen.
 - If the nuclear spins are in opposite direction for both the protons, it is Para Hydrogen.

Hydrogen

Hydrogen

• With the decrease in the temperature, the Ortho hydrogen is converted to the Para hydrogen.

At 300 K		At 20 K		t 20 K
Form	Relative %		Form	Relative %
Ortho	75		Ortho	0.179
Para	25		Para	99.821

CRYOGENIC ENGINEERING Hydrogen

- Para form is a low energy form and therefore heat is liberated during conversion.
- Conversion of ortho to para form of hydrogen is an exothermic reaction.
- This conversion is a very slow process.
- In order to make this conversion faster, catalysts are added.

Hydrogen

Liquefaction

- During liquefaction, the heat of conversion causes evaporation of 70% of hydrogen originally liquefied.
- This is an important constraint in liquefaction and storage of H_2 .

Figure showing the fraction of liquid H₂ evaporated due to Ortho to Para conversion with storage time.

 Hence, liquefaction of hydrogen should ensure complete conversion.

Deuterium

- Deuterium atom has one proton and one neutron.
 Two Deuterium atoms make up one D₂ which is called as Heavy Hydrogen.
- Similar to hydrogen, it also has different spatial orientations Ortho and Para forms.
- The relative concentration of these two forms is a function of temperature.
- Normal deuterium exists in ratio of 2/3 Ortho and 1/3 Para.

Deuterium

 As temperature decreases, Para D₂ gets converted to Ortho D₂. (In case of hydrogen, Ortho H₂ gets converted to Para H₂).

At 300 K		At 20 K	
Form	Relative %	Form	Relative %
Ortho	66.67	Ortho	98.002
Para	33.33	Para	1.998

 Most of the physical properties of Hydrogen and Deuterium mildly depend on Ortho - Para Composition.

Hydrogen

Uses

- Cryogenic engines are powered by propellants like liquid hydrogen.
- It is being considered as fuel for automobiles.
- Cryocoolers working on a closed cycle use hydrogen as working fluid.
- Hydrogen codes and standards should be followed to ensure safety while handling liquid hydrogen.

Helium

Helium

- Evidence of Helium was first noted by Janssen during solar eclipse of 1868. It was discovered as a new line in the solar spectrum.
- In the year 1895, Ramsay discovered Helium in Uranium mineral called as Clevite.
- In the year 1908, K. Onnes at Leiden liquefied Helium using Helium gas obtained by heating Monazite sand procured from India.

Helium

Helium

Helium is an inert gas and exists in monatomic state.

Normal Boiling Point	K	4.25
Normal Freezing Point	K	NA
Critical Pressure	Мра	0.227
Critical Temperature	К	5.25
Liquid Helium Density	kg/m ³	124.8
Latent Heat	kJ/kg	20.28

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Helium

Helium

- In 1920, Aston discovered another isotope of Helium - He³ in addition to He⁴.
- Helium exists in two isotopes.
 1. He⁴ = 2 electrons, 2 protons + 2 neutrons.
 2. He³ = 2 electrons, 2 protons + 1 neutrons.

Helium

Helium

 The percentage of He³ is 1.3 x 10⁻⁴ %. So mostly it is He⁴.

Isotope	Relative %
He – 4	~100
He – 3	1.3 x 10 ⁻⁴

- From the adjacent figure, Helium has no temperature and pressure at which solid - liquid – vapor can co-exist. It means that it has no triple point.
- Saturated liquid Helium must be compressed to 25.3 bar to solidify.

- As Liquid Helium is further cooled below a particular temperature (2.17 K)
- A new liquid phase, LHe–II, emerges out.
- The two different
 liquids are called as
 LHe I and LHe II.

- These liquid phases are distinguished on the basis of viscosity as follows.
- LHe-I : Normal fluid
- LHe-II : Super fluid

- This phase separation line is called as Lambda Line.
- The point of intersection of phase separation line with saturated liquid line is called as Lambda Point.

- LHe II is called as super fluid because it exhibits properties like zero viscosity and large thermal conductivity.
- This fluid expands on cooling.

Owing to its low viscosity, the fluid below the lambda point, LHe – II, flows through narrow slits and channels very rapidly.

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Phase Transition

First Order

$$G = E + PV - TS$$

- The first order derivative of Gibbs Free Energy w.r.t. pressure at constant temperature gives density.
- The density undergoes an abrupt change leading to a discontinuity called as Gibbs First Order discontinuity or 1st Order Transition.

Phase Transition

First Order

- These transitions involve latent heat.
- The temperature of the system remains constant.
- For example, the solid to liquid or liquid to gaseous transition, the latent heat is absorbed at constant temperature.

Phase Transition

Second Order

- These transitions are continuous in first order but exhibit discontinuity in second order.
- The second derivative of Gibbs free energy w.r.t. chemical potential gives the specific heat.
- The variation of specific heat in Liquid Helium is abrupt and posses a discontinuity at the lambda point.

Phase Transition

- The point is called as lambda point because shape of the curve resembles the Greek letter λ .
- There is no energy involved in lambda transition.
- Specific heat is infinite at λ point and it is called as 2^{nd} Order Transition.

Super fluid Helium

- Kapitza et al. stated that viscosity for flow through thin channels is independent of pressure drop and is only a function of temperature.
- To explain this anomaly, a two fluid model is used.

Super fluid Helium

In the two fluid model, the liquid is assumed to be composed of two fluids, normal and super fluid.

Mathematically,
$$\rho = \rho_n + \rho_s$$

- ρ total density
- ρ_{n} normal density

33

 ρ_s – super fluid density.

Super fluid Helium

Super fluid Helium

- Also, heat transfer in super fluid helium (LHe II) is very special. When the pressure above LHe - I is reduced by pumping, the fluid boils vigorously.
- During pumping, the temperature of liquid decreases and a part of the liquid is boiled away.
- When T < λ point temperature, the apparent boiling of the fluid stops.

Super fluid Helium

- Liquid becomes very clear and quiet, even though it is vaporizing rapidly.
- Thermal Conductivity of He II is so large, that the vapor bubbles do not have time to form within the body of the fluid before the heat is quickly conducted to the surface.

Fluid	Thermal Cond. (W/m-K)	Viscosity (Pa s)
He – I	0.024	3 x 10 ⁻⁶
He – II	86500	10 ⁻⁷ to 10 ⁻¹²

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay

Information

Kaptiza was awarded Nobel Prize in Physics in the year 1978 for his basic inventions and discoveries in the area of low – temperature physics.

- A self assessment exercise is given after this slide.
- Kindly asses yourself for this lecture.

Self Assessment

- 1. Boiling point of Hydrogen is _____
- 2. Isotopes of hydrogen are _____, ____ &

3. H₂ with same proton spin is characterized as _____ hydrogen

4. As temperature decreases, Deuterium converts

from _____ to _____

5. A new phase of LHe begins at _____

Self Assessment

- 6. Viscosity is zero at _____
- 7. Boiling point of Helium is _____
- 8. The thermal conductivity of He I and He II are

_____ and _____ respectively.

Answers

- 1. 20.3 K
- 2. Hydrogen, Deuterium and Tritium.
- 3. Ortho Hydrogen
- 4. Para, Ortho
- 5. 2.17 K
- 6. Lambda point
- 7. 4.2 K
- 8. 0.024, 86500

Thank You!

Prof. M D Atrey, Department of Mechanical Engineering, IIT Bombay